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ABSTRACT. For a long time the formulation of a mathematically consistent statisti-

cal mechanical theory for a system of charged particles had remained a formidable

unsolved problem. Recently, the problem had been satisfactorily solved, (see

Bagchi [i] [2]) ,by utilizing the concept of ion-atmosphere and generalized Poissom

Boltzmann (PB) equation. AltPmugh the original Debye-Hueckel (DH) theory of strong

electrolytes [3] cannot be accepted as a consistent theory, neither mathematically

nor physically, modified DH theory, in which the exclusion voltsm of the ions enter

directly into the distribution functions, had been proved to b4 mathematically con-

sistent. It also yielded reliable physical results for both thermodynamic and

transport properties of electrolytic solutions. Further, it has already been

proved by the author from theoretical considerations (cf. Bagchi [4])as well as

from a posteriori verification (see refs. [I] [2]) that the concept of ion-atmos-

phere and the use of PB equation retain their validities generally. Now during the
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past 30 years, for convenice of calculations, various simplified versions of the

original Dutta-Bagchi distribution function (Dutta & Bagchl [5])had been used

successfully in modified DH theory of solutions of strong electrolytes. The pri-

mary object of this extensive study, (carried out by the author during 1968-73),

was to decide a posteriori by using the exact analytic solution of the relevant PB

equation about hemost suitable, yet theoretically consistent, form of the distri-

bution function. A critical analysis of these results eventually led to the formu-

lation of a new approach to the statistical mechanics of classical systems (see

Bagchi [2]), In view of the uncertainties inherent in the nature of the system to

be discussed below, it is believed that this voluminous work, (containing 35 tables

and 120 graphs), in spite of its legitimate simplifying assumptions, would be of

great assistance to those who are interested in studying the properties of ionic

solutions from the standpoint of a physically and mathemaalcall.y consistent theory.

KEY WORDS AND PHRASES. Statistical Mechanics of Solutions, Electrolytes, Plasmas,

Non-linear Partial Differential Equation, Theoretical Physics.

SUBJECT CLASSIFICATION CODE: 0024, 0064, 1150, 1160.

I. INTRODUCTION.

In a previous pmblication in this Journal, (Bagchi [2]), a new approach to the

statistical mechanics of classical systems based on the partition of the phase-ace

(B space) into configuration space and momentum space and on the concept of ion-

atmosphere had been proposed. This approach had been found to be mathematically

consistent and led to physically reliable results for dense systems also. In par-

tlcular, even in the linear approximation of the ion-atmosphere potential, this

technique yielded satisfactory results for both thermodynamic and transport proper-

ties of fused alkali halldes. These results verified conclusively the previous

theoretical proof, (see Bagchl [4]), that the ion-atmosphere concept and the gener-

alized Poisson-Boltzmann equation remain valid generally for any system of charged
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particles interacting with Coulomb forces. It is to be noted in this connection

that for such systems one cannot even formulate a mathematically consistent theory

if one follows the traditional techniques. Consequently, it can safely be asset-

ted that at the present stage of our knowledge, the techniques adopted in this

new approach offer us the only feasible method to tackle any classical system at

any density in a rigorous manner.

The concept of ion-atmospher which plays a central role in this new approach,

was first introduced by Debye & Hueckel [3] in order to calculate the "excess" free

energy of a system due to Coulomb interaction between the charged particles. The

original DH theory, however, cannot be accepted even as a limiting theory for infi-

nitely dilute solutions. It suffers from many mathematical and physical inconsis-

tencies, mainly due to the fact that it cannot incorporate short range repulsive

forces in the framework of the theory. Both the original DH theory and Gibbs’

configuration integral become mathematically meaningless if one takes into account

only the Coulomb forces. If, however, one incorporates polarisation forces and

short range forces, one cannot use PB equation of the original DH theory. Also, in

this case a direct evaluation of Gibbs’ phase integral becomes almost impossible.

Consequently, during the last fifty years many workers have tried to improve upon

the original DH theory by using arbitrarily and in an ad hoc way various recipes.

It is now generally believed, (albeit erroneously), that Mayer-McMillan theory

offers a rigorous approach to the problem of ionic solutions. But a careful scrut-

iny of the foundation of this theory, (cf. Friedman [6], [7]; Anderson [8]), would

reveal that this theory is also based on a convenient recipe, specifically invented

to avoid divergence difficulties of the original DH theory, which has no theoreti-

cal foundation within the formalism of Mayer’s cluster integral technique. The

extensive literature on the subject of the ion-atmosphere theory of strong electro-

lytes contains many conclusions which cannot be justified if one insists on a theo-

retically consistent approach. Further, many of the fundamental objections raised
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against the ion-atmosphere theory have already been proved to be either irrelevant

or inapplicable for the DH model of the actual system. Various modifications of

the original DH theory as well as objections raised against the ion-atmosphere

concept iself and the DH technique for calculating the "excess" electrostatic free

energy of the system had been critically discussed in the previous paper, (Bagchl

[2])) and will not be repeated here. As had been mentioned there, the only feasible

way in which the problem of a system of charged particles and, in particular, of

ionic solutions can be tackled in a mathematically and physically consistent way is

to utilize the DH technique for calculating the electrostatic free energy of the

system by using a new diserlbution function, instead of the Boltzmann distribution

used by Debye & Hueckel, which incorporatmdlrectly the exclusion volumes of the

ions. This permits one to use modified Polsson-Boltzmann equation. The repulsive

forces being taken into account in the exclusion volume, the theory becomes mathe-

matically and physically consistent. The polarization forces are also indirectly

taken into accomt by the macroscopic dielectric constant of the medium. Thus the

problem becomes tractable as well as mathematically rigorous, though one might con-

sider this modified DH theory still as a legitimate approximation due to the fact

that the medium is treated as a continuum with a fixed dielectric constant. It is

interesting to note here that if one uses the low value, suggested by the work

of Hasted et al [9]), of the dlelectricconsant of aqueous solutions instead of the

macroscopic value (78.3) of pure water, calculated results become physically unae-

ceptable. This points out our lack of knowledge regarding the detailed structure of

water molecutes in the nelghbourhood of ions. Consequently, in view of additional

uncertalnltles inherent in the nature of the system to be discussed below, it would

be a futile exercise to try to formulate a more exact theory. However,lt may be no-

ted that such an exact theory can be formulated with th help of this new appro-

ach by taking into consideration water molecules also as discrete particles and by

incorporatln all types of forces and a suitable partial differential equation in
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the formalism of the theory.

During the last 30 years, the work of various authors on the modified DH

theory have been proved to be not only mathematically consistent but also yielded

reliable physical results both for thermodynamic and for transport properties of

solutions of strong electrolytes even at high concentrations, (see references [i0],

[ii], [12]). Now, in modified DH theory several parameters which enter into the

theory cannot be unequivocally determined from theoretical considerations, although

they are conceptually well defined. Consequently, in view of all these uncertalni-

ties and for convenience of calculation, in the literature several models were

chosen for these parameters in order to obtain good agreement between calculated

and experimental values.

The exact solution of the generalized Polsson-Boltzmann equation V2A(r) f(A),

obtained first by Bagchi, Das and Chakravartl [13], gave excellent results for the

nonlinear potential of the system for the case of the original DH theory, (see

Bagchl & Pllschke [14]), in complete agreement with those calculated by Guggenheim

[15] with the help of an electronic computer. It was therefore decided to calcu-

late the exact nonlinear potential A(r) an activity coefficients for various mod-

els of the modified DH theory as well as for the original DH theory for fixed val-

ues of the various relevant parameters.

The principal aim of this extensive study was not to get the results to fit

the experimental values, namely, the mean activity coefficients, but

to decide a posterlori about the most suitable, yet theoretically consistent, form

of the distribution function of the ions around a central ion. Further, it was

expected that the voluminous results for different values of he relevant parame-

ters would permit one to choose correctly the appropriate effective radius of the

ion, the exclusion volumes as well as the nonlinear potential for the actual syste,

of interest without undertaking too many laborious calculations. It might be noted

that once these parameters are chosen properly for a system, its tharmodynamic
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properties are given uniquely throughout the concentration range without incor-

porating any further ad hoc assumptions.

For simplicity as well as due to the fact that most of the literature was

confined to binary electrolytes, we shall also deal here with only such systems.

Comparison of the calculated and experimentally obtained activity coeffl-

clents indicates that the most satisfactory distribution function of ions around

a central ion ’i’ is given by

+ i in-(r) bA_+ exp i’i/kr + i]

4
where b yb0; b0 (r+ + 2 rH20 + r_)3;

iA_+ ( 2)nb
y denotes the overlap-correction factor for the given system.

r+are the crystallographic radii of the ions and rH20
(For the meaning of other symbols, see Sec. 3 p. 16)

that of water.

In the literature the model A of (I.i) where r+ r_ a,the effective average

4
radius of the ions, and b a3 had been used most widely. It is capable of re-

producing satisfactorily equilibrium and nonequillbrium properties of solutions of

electrolytes even at high concentrations, (see references [ii] and [12]). Unfor-

tunately, most often such overlap uncorrected exclusion volume b becomes phy-

sically inconsistent, namely ,(n b + nb) becomes greater thn unity’. Further, in

these calculations one used the linear approximation of the ion-atmosphere poten-

tlal. Consequently, such agreement cannot be relied upon for quantitative verlfi-

cation of the theory, since the present investigation shows that there are slgnl-

ficant differences between linear and nonlinear values. But for large values of

a (>2) and for large concentrations (c>2N) the differences tend to become

smaller, specially for I-i electrolyte.

For the sake of comparison we have used this model A as well as the model B
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4
in which we have also set r+ r_ a, but b (a + )3 Obviously, thisrH2 0

represents the average hydrated ionic volume and cannot give the correct exclu-

sion volume.

As had been discussed before, (cf. [2]), it is almost impossible to calculate

exactly the correct b. But if one uses (i.I), one can determine the only unknown

parameter 7 from a comparison of theoretical results with the experimental values

by trial and error. But in this investigation we have not attempted to carry out

this programme, since our aim was to determine the correct distribution function.

The distribution function (i.I) implies the partition of the configuration

space into cells of equal size b for the distribution of two kinds of ions. As

discussed before, (cf. [2]), this mode of distribution has considerable theoretl-

cal Justification and does not suffer from physical inconsistencies encountered

in other distribution functions.

It is interesting to note that this distribution can be obtained through a

non-permisslble approximation of the original Dutta-Bagchl distribution function

(1.3):

i n+(r) b.+,_n+- (r)
b+ [A +_ exp (ei,i/kT) + ’i ]

(For the meaning of the symbols see Section 3, p. 16)

The distribution function (i.i) was later derived by Wicke & Eigen [16] as

well as by Falkenhagen [Ii]. None of these derivations appear to be satisfactory.

All the distribution functions used in modified DH theory and their modes of de-

rivation had been critically discussed and scrutinised in the previous paper

(Bagchi [2]) and a new rigorous method of deriving the distribution function of

the type given in eq. (i.i) had been proposed there. In this new method of deri-

vation the two kinds of particles are distributed independently in the cells of

the configuration space. One can therefore use different exclusion volumes
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for different ions. But if one uses Boltzmann’s concept of exclusion volume and

takes this as the cell size of the configuration space, then it is much more

Justifiable to use the same cell size b for both the ions. Detailed investlga-

tlons on simpler systems as fused alkali halldes, where the situation is not com-

pllcated by the presence of water molecules, showed that for thermodynamic and

transport properties much better results were obtained by using the same exclu-

slon volume b and the actual crystallographic radii of the ions for calculating

the ion-atmosphere potential on the surface of the ion where the boundary condi-

tion of the PB equation is applied. But in ionic solutions where the positive

ions are usually permanently hydrated and where at least a layer of water mole-

cules separates adjacent unlike ions, ’a’ is to be taken as the hydrated ionic

radius and not the crystallographic one.But one must also remember special cases.

+
For example, large cations like Cs and anions are generally not hydrated. Also,

+
small cations llke Li can be embedded inside the tetrahedral structure of water

molecules.

Finally, if we recall that the correct form of any physical statistics

can be determined only a posteriori, it is found that the correct distribution

function has the same form as the expression (i.i), but the relation between the

exclusion volume b and the distance ai, where the boundary condition of the PB

equation is to be taken, has to be determined from the overlap-correction of

Boltzmann’s covering sphere and by taking into consideration that at least a

layer of water molecules separates the adjacent unlike ions. In spite of the

difficulty of calculating the exact value of b, it is reassuring to know that

the expression (I.I) is theoretically consistent and reasonably approximate val-

ues of the parameters are adequate enough to predict satisfactorily the phy-

sical properties of the ionic solutionswithout any ad hoc assumption outside

the formalism of the ion-atmosphere concept and the framework of the modified

DH theory. But this valuable and extremely helpful insight was obtained
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by detailed and rigorous comparative studies of all versions of the ion-atmos-

phere theory.

The starting points of this investigation are:

(i) The calculation of the exact nonlinear potential l(r) of the relevant

Poisson-Boltzmann (PB) equation.

(ii) The original Dutta-Bagchi distribution function, the expression (1.3),

which leads to the distribution function (i.i) as well as to Boltzmann distribu-

tion function.

The insight that the distribution function (1.3) suffers from several prac-

tical difficulties and physical inconsistencies and that the correct distribu-

tion function has the form (i.I) which can be derived rigorously without any

approximation came from this study and the problem had been discussed in the pre-

vious paper (Bagchi [2]) and will not be discussed here again.

2. AN ANALYTIC SOLUTION OF V21 (r f(l).

Our probln is to find a spherically ymmetric solution of the above differ-

ential equ.ation, i.e., of the equation

d2A 2dA
+-9 f()

for r > a with the boundary conditions

(d) C, (a constant),+ o as r / and
dr r =a

(2.2)

The existence and uniqueness of the solution of (2.1) with the boundary condi-

tions (2.2) had been proved by Gronwall [17]. Mathematicians had studied the

equation V2 f(%) without boundary conditions but their concern was mainly to

discuss the growth condition on f(l) which would ensure the existence of an entire

solution. Keller [18]generalized the previous work of mathematicians on this

topic.
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But physicists need an explicit series solution in order to test a theory

and to apply it to specific problems. To my knowledge, no explicit analytic solu-

tion of the generalized equation (2.1) with the boundary conditions (2.2) was

known before the work of Bagchi et al [13]. They obtained a solution in the form

of an integral equation as well as in the form of a convenient explicit series

solution needed in practice. The only assumption was that f(%) should be monotonic

and could be expanded in a power series about % o. For our problem of electro-

lytes, f(o) o, (the condition of electro-neutrality).

These assumptions are consistent with those stipulated by Gronwall [17] and

Keller [18]. Bagchi & elischke [14] proved the absolute convergence of this series

solution for r > a and, as mentioned before, obtained a very accurate solution for

the particular case where f(%) was chosen to be the function given by DH theory.

Previously, Gronwall et al [19] also obtained an explicit series solution for this

particular case. But they could not pove the overall convergence of their series

solution. Moreover, the main drawback of their solution was the slow convergence

of he series. Ore, the contrary, the series solution proposed by Bagchi et al

[13] proved to be very rapidly convergent and has many other practical advantages.

These were discussed in the paper of Bagchi & Plischke [14].

(i) The Solution.

For convenience, a brief outline of the method of solution is given below.

Let the solution be given by a power series in , a parameter independent of r,

such that

s -il(r) Z b (r) .r
s=l s

(2.3)

since in our case

f() <o). +f"<o) 2
2!

+
3!

f(l) f’(o) + (2.4)
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we can express the differential equation (2.1) in the form

d2(r%)
X2(r%)= r[f(%) X2X] (2.5)

We have set here f’(o) X2 >o,or its physical significance see Sec. 6 (ii)(2.6)

Now substituting the expression for rX from (2.3) and expanding the right hand side

of (2.5) also in powers of u
s we get

y. S[b (r) X2 b (r)] Z ds G (r) (2.7)
s s s_l= ss=l

where O, is given by (2.8). The epxression (2.9) gives the explicit form of the

general term G
s

G (r/s!))s/)us [f(X) X21]
S f(3)

(rls i)as/aGe [f"(O) X2 + (0).), +
2! 3!

The general term can be obtained from the multinomial expression

-1 3(r/s!) BS/Bus -[1 (n)(0)/(n!). (r-lblu + r b2u2 + r- b3u + ..)n]u=o
al a2 a +a2+

(r/s!)@s/Bs .[f(n)(0)/(n!){(n!.)/(al a2 !..).(b .b2 ..)/r

(2.8)

a + 2a2 + 3a3 + ..]
u=O

where a + a
2

+ n; a + 2a 2 + s, if we note that only the coefficient of

contributes to G Since n can vary from s to 2, we have
s

O (r) rE f(n)(0) n! b
(s-l) as-I

s n a .as_1 r
(2.9)

summed over all permissible values of a2, as_I
Hence equating the coefficients of us on both sides of the eq (2.7) we obtain a

system of differential equations

b’ X2 b O; b" X2 b G (r), for s > 2
S S S

(2.10)

The solutions of (2.10), apart from integration constants, are
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b e.p(-xr) bs I_X 7 Gs(E) slnh X (x-r) dx (s ._> 2)

r

(2.)

Of the two integration constants of the eq. (2.1), one vanishes due to the first

boundary condition and the other can be determined from the given second boundary

condition.

The solution is therefore given by the integral eq. (2.12)

F (x) sinh (x-r)X (r) r-1 exp (-X) +(xr. g X dx

r

where

g(x) =- x[(x) x2X]

(2.12)

(2.13)

In this form a is contained explicitly only in the linear term and we want to re-

place it by the constant C of the second boundary condition. For this we first note

that X(a) is given by

X(a) Ca g(x) exp(-X.X dx

l+xa I + Xa a

(2.14)

The first term

CaX
L
(a) I + xa

(2.15)

is the value of the solution

Ca2 -I
XL(r) "i + xa r exp-X (r-a) (2.16)

of the linearlzed equation

d2X 2 dX+ --r --dr X2A (2.17)

at r a under the boundary conditions (2.2)

Now the value of X(r) at any point r>a can be expressed in terms of X(a) as
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k(r) Xl(r) %(a) + X2(r) 12(a) + (2.18)

-I 2 -I
Since (r) bl(r) r + a b2(r) r +

-l n
and X kn(a) X [ebl(a) a

-I + e2 52(a) a + ...]
n n

(2.9)

one can, by equating the coefficients of equal powers of in (2.19) obtain X in
n

terms of bj+I and Xj, (j < n i). Thus l(r) can 5e expressed completely in terms

-I
of b (r) r only.

s

As proved 5efore, (cf, ref. [14]), the parameter e can be chosen in such a way,

(e.g. < a exp(xa)), that-the series (2.3) converges uniformly for all values of

r > o. Further, in the final form of the solution, namely, eq. (2.18), the para-

meter e does not appear explicitly. The solution I can be expressed completely in

-l
terms of the function exp (-Xr) r and consequently converges very rapidly. This

particular method of expansion can therefore be used conveniently for investigating

nonlinear nuclear or meson potentials, as will be shown in a later work.

(ii) Numerical Evaluation Of (r).

To evaluate %(r) one calculates first l(a) from eq. (2.14) and then %(r) with

the help of equation (2.18). For this it is necessary to calculate the first few

terms of the functions G (r), bs(r), X (r). Tables i 3 give these terms up to
s s

s 7. Higher terms, if necessary, can be easily obtained from the general expre-

ssions for these functions.

l(a) is calculated from eq. (2.14). For this the integrand is first expressed

in terms of l(a) by using eq. (2.18) in the expansion of f(l) and terminating it at

a suitable point. The integral is then evaluated by Simpson’s rule:

2n

+ T + S ]ydx h/3" [Y0 + Y n n n
x0

(2.20)

where

T =4 I
n

Y2i i; S 2 Z
n-I

n i=I n i=I Y2i
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and h distance between points on the abscissa.

This gives a relation

%(a) %L(a) + H(%(a)), (2.21)

where H(%(a)) is a known function of %(a). Finally, % (a) is then determined from

(2.21) by Horner’s method. Once %(a) is found, the value of % at any point r is

obtained from (2.18) by again terminating the series at a suitable point.

If one calculates %(r) first for a central positive ion, then for a negative

central ion, one can just substitute-% in place +.

There are two sources of error in the numerical calculation. One comes from

the integration in steps of ma to the final value na (instead of up to in

infinitesimal steps) and the other from the termination of the series (2.18). In

each case the error was practically eliminated by carrying out the calculation so

far that no significant difference in the results up to fourth significant place

could be obtained.

3. ION-ATMOSPHERE THEORY OF STRONG ELECTROLYTES.

The concept of ion-atmosphere and its usefulness had been critically discussed

before, ( see Bagchi [2]). It has been shown there that for a mathe-

matically consistent theory one must use the modified Debye-Hueckel theory. For a

comparative study of the different versions of the modified theory as well as the

original DH theory, it is convenient to start from the distribution function (1.3),

since this distribution leads to the distribution function (i.I) as well as to

Boltzmann’s distribution used in DH theory. The distribution function (1.3) is

obtained by the approximation of an intractable expression by neglecting higher

order terms. Its validity is restricted by the conditions, (for the derivation,

+ +
see Dutta & Bagchi [5]), that the quantities nb+, nb+_ are much smaller than

unity such that all of their higher powers except the first can be neglected. For

actual ionic volumes these conditions are justifiable even at high concentrations.
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But if we use Boltzmann’s exclusion volumes, as we must, they are unacceptable,

even at moderate concentrations.

It should however be emphasized again that this distribution function (1.3)

and its mode of derivation suffer from several difficulties and the approximation

used to obtain the distribution function (l.l) is not permissible. The correct

distribution function of the modified theory, as noted before (see Bagchl [2])

and once again confirmed by the results obtained from this study, must be based

on the distribution function (i.i) which can be derived rigorously without any

approximation.

Nevertheless, as noted above, the starting point of this comparative study is

the distribution function (1.3). The different versions of the ion-atmosphere

theory are then given by

verslon I:
l-n b+_

+
n b_+[A+exp(z+%) + lJ

V21 f(1) (3 .2)

f(%)
4 e 2 z+b_[A_exp(z_l)+l]+z_b+[A+exp(z.l)+, I] -l+_(z++z_)

{
DkT 2b+b_[A+exp (z+) +i] [A_exp (z _I) +i] -b+_

(3.3)

Neglecting terms involving b+_, we get the version II. Thus,

version II

+_ I

b+ [A+exp (z+l) +i] (3.4)

V2% f(1) (3.5)

f(1) 4 e2 z+ z_
nkT {b+[A+exp(z+%) + i] + b[A_ exp(z_l) + I] (3.6)

Finally, for b / o, we get the original expressions of DH theory.
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DH theory:

+ +
n n exp- (z+%) (3.7)

V2% f() (3.8)

Here,

f(k) 4e 2 +
DkT {Z+n0 exp- (z+l) + z_n0 exp- (z_l)} (3.9)

+n- number of positive (negative) ions at a distance r from the central ion

b+_, b+ are the exclusion volumes of two unlike ions and two llke ions

respectively

e+ z+e are the charges of two kinds of ions__
kT

e is the magnitude of the elementary (electronic) charge and z

(positive/negative) are the valencies of the ions.

(r) is the potential at a distance r from the central ion

k Boltzmann’s constant

D dielectric constant of the (continuous) medium
+

A+ I nb_
+ i, (for I)
nb+

I
nb

I, (for II)

+
nO average number of ions per unit volume,

V2 32 2 3
8r--"/ r 8r

4. EXPRESSIONS NEEDED TO CALCULATE THE RESULTS.

We first derive the required formulae for the three versions of the ion-

atmosphere theory.

(i) The Charge Density.

To get the charge density
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n+0.(r) z e (r) + z e n-(r) (4 i)

we must obtain n+(r) and n-(r) as functions of (r). For a central positive ion,

from eq. (i. we get for the excess positive charge, expressed as a fraction of

the magnitude of the elementary charge, the expression

z+ e(n+- no+ dV

b [A exp(z ) + i] b+_4r2dr z+{5+5_[A+ (z+) + l][A_exp(z_A) + 1 ]-b_ (4.2)

Similarly, the excess negative charge (for the positive central ion) is given by

z e(n 0 -n dV

b+[A+exp(z+R) + i] b_
4r 2 dr z_{n- b+b_[A+expCz+R) + l][A_exp(z_R) + i ]-b_ (4.3)

The net charge, expressed as a fraction of e, is the difference between (2) and

(3). That is,

+
(z+ n + z_ n d

z+b [A_exp(z_%)+l] + z_b+[A expCz+l)+ l]-b+_(z++z_)
4r 2dr {b+bb[A+exp(z+%)+ l][A_exp(z_X)+,l]-b_ } (4.4)

The corresponding expressions for the version II are:

+ + + 1
z+(n -n0)dV 4wr2dr z+n0{(l_nb+)exp(z+l) + nb+

I} (4.5)

z_(n-n-)dV 4r2drz_n0 {I (1-nob_)exp(z_) + nb_

z+n8 z_no
P dV 4 =r{
e "’-n’b )exp(z+[)+nib+ + (l-ngb)exp(z ),)+no-b

(4.6)

(4.7)
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For the Debye-Hueckel theory the corresponding expressions are:

4r2dr z+e(n
+ n

(4.8)

4r2dr z_e(n n-)

exp-(z_A) -i(xa)2 ()2 z+ z_ d(r/a) (4.9)

pdV (xa) 2 (De2kTa) d(r/a)z+ z_ a
(4.10)

(ll) Expressions for f(0)., f’(0), f"(0), f(3)(0),etc.
In order to solve the differential equation we need the values of these

quantities.

It is easily proved that in all the three cases f(0) 0, (the condition of

electro-neutrallty).

For (I)

f’(l)
DkT

z+z_b_A_exp (z_,) +z+z b+A+exp (z+,)

df(l) -’), {b+b_ [A+exp (z+ik)-1] [A_exP (z_ik)+1 ]-b2+_
b+b_ [A+exp (z+) +i] [A_exp (z_) +i]-b_ (4 .ii)

Since f(0) 0, the second term will vanish. Hence

f’(0) --- x2

4e2

DkT
n

+ -(l-n;b+_-nb+(l-n0b+-nob )+no
z+z_ l-=b+_-nb+_

(4.12)
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z+A+b+ + z A b
f"(o)

b+A+ + b_A_
(4.3)

and

b+b_[z+A+(A_+I) + z_A_(A++I) ]l,-2X2 b+b_(A++l)(A_+l) b_

z 2A b 4 z2+A+b+f(3)(0) X2 b_A_+ b+A+

(z_A_b_ + z+A+b+)b+b_[ z+A+(A_+I) + z_A_(A+-I) ]
-2X2(b A + b+A+)[5+b (A++I)(A + i) bz ]

(b+b_)2[z+A+(A_+l) + z_A_(A++I) ]2
+42 [b+b_(A++l)(A_+ i) b_]

-3X2
b+b_{z2+A+(A_4- i) + 2z+z_A+A_ 4- z2_A_(A++I) }

b+b_(A++l) (A_+ i) b+_

-f"(0)
b+l [z+A+(A_+ i) + z_A_(A++I)]

zb+b_(A++l) (A_+I) b+_
(4.14)

For (II)

f’ (0) X2= DkT z+z_{ n(l-nb_) + n(l-nb+) } (’4.15)

f" (0)
z+A+ 2zs+A+2x." {

+
b +(A+ +1) 2 b (A +1) 2

b+(A++l) 2 b+(A++l) 3

z3A 2z3A2
-I-
b (A +l-Y b (A +l) s} (4 .16)
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X2 z+A+ I

z+A+ z2_ A_
+

b+(A++) a _(A_) a

6A 6
(A++i)

+ (A++I).]

zA 6A1 6A_ + ]}+ b_ [(A_+l) 2 (A_@l) (A_+I) t’ (4.17)

For D-H theory:

f’(0) X2
4=2 +
DkT n0z+(z+ z_)

2z2 z+
f"(o)

Z+ Z_
(4.19)

f() (o) x Z+ Z_
(4 .20)

(iii) Expressions for 8__, __, X
+ VN N

+In order to calculate activity coefficients we need these quantities. N

N denote the total numSer of positive and negative ions in the solution of volume

Ve

In order to obtain these quantities we first rewrite X2 in the form

(cf. eq. 4.12),
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X2
42

DkT z+z_

On differentiation we get

N+ +

{V
(1- ---)+ N N b+. N+b.)v -V-(- v v }

N_b+_ N+b+_
V V

(4.21)

X 1 42 z+z_

8N
+ 2X DkT V

rl-2n0b+_ n.b+ nb_
{Ll_0-b+’_ n+ ]

+ + +
n0(l-n0b+_ nob ) + n(l-nb+_ nob+)

+ b+_[ +
(l_n0b+_ nob+_) 2

_I 1 4e2 z+z_
8N- 2X DkT V

{[l-2nb+, nb_- nb+
1 nob+_ nb+_ ]

+ +
n0(1-n0b+_ n;5_) + n(1-n;5+_ nb+)

+b+_[ + 2(1-nb+_ nob+_)
]}

(4.23)

X _/. 1 4re2 z+z no + no

1 +8v 2V 2X DkT V -n0b+_-n0b+_

+ +
n0(1-n0b+_ -n;b_) + n;(1-n.b+_-nb+
(l-n;b +_ nob+_) 2

(4.24)

For (II)

x i__ {_ 4,r____ z+z_
8N
+

2X DkT V
[l-n(b_+b+) ] } (4.25)

4e2 z+z___{
2X DkT V

(1-2nb)}; (for b_ b+ b) (4.26)
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4e2 z+z_
DkT 2V

+
/_[1-n0(b+ b )]} (4.27)

z+z4e2

DkT V (I 25.)} (for b_ b+ b) (4.28)

For DH theory:

k Jk -4":z -+*)V 2 " ob+z+2 2+ no b_z_) }- -/-
2V

z 2

8N
+

2 X DkT V

(4.29)

(4.30)

z2X. __._1 {4w2
}

N 2 X DkT V
(4.31)

For all cases

3V 2V

8T 2T

(4.32)

(4.33)

where

= i{ 1 2r(xa)}X X l+xa (4.34)

r(x) x--2- {x n (l+x)) (4.35)
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(lii) Free Energy And Mean Activity Coefficient

For the calculation of the free energy and mean activity coefficients we

follow the original method of Debye and Hueckel, namely, simultaneous charging

process. We need analytic expresslors for (r) and l(a). For convenience of cal-

culation, instead of using (2.18), (2.12) and (2.14), we represent %(r) by the

following series:

A(r) BIAL(r) + B2l[(r) + B(r) + (4.36)

where kL(r) is the linearized solution glve, by (2.16)

In actual computation we have used only the first three terms and determined

the constants BI, B2, B 3 from the conditions

dk(r)
dr

r=a
LV Bn dr (4 .37)

r--a
n=l

3

n=l

(4.38)

,(R) )’L(R); R >> a (4.39)

At the surface of the central ion of charge z+e and "effective" radius a+,
the potential due to the atmospheric ions is

(a+) (a+) Da--



232 S.N. BAGCHI

where

+ e )2 3 z+e+(T) L Da+B @L(a+) + B2 2(a+) + B3 ( *L(a+) (4.40)

z+e i
(4.41)L(a+) Da+ l+xa+

If we decrease the elementary charge from e to BE (0 <_ B _< i) simultaneously

and at the same relative rate for all the N ions present in this particular

subsystem in which the central ion is distinguished from other ions, while keeping

the configuration fixed, the potential due to the atmospheric ions is given by

z+Be i’+ B+ De+ +a+
+]_ I )2+ B2 kT (Da’ l+xa+

z+B e z+B e
+ B: BE 2 1 )3 (4.42)(-) (Da

+ l+xa+ Da+

Suppose now we let the elementary charge Beincrease from 0 to e. Then in any

infinitesimal increase d(z+Be) of the charges, the corresponding change in the

el
free energy dr+ due to the central ion as well as all other atmospheric ions is

given by

df+
el (e, a+) d(z+Be) (4.43)

In the entire process, the change is given by

el
f+ 0

/
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B (z+s)2
Da+ l+Xa+

+ z3+u .3dIJ + B2 (Da+)ZkT 0
/ (l+Jxa)2 dIJ

6
+ z+e 1j5 ze2

+ B3 Da+) 3’(’kT)2 (I+xa+)
dp-

Eta+ (4.44)

Integrating we get,

el + Z+2e2 Z3+e
f+ B r{xa+)+ B; (Da+)ZkT q{xa+)

+ B 3 "(D-a+) (kT)2 (xa+) 2Da+

where

r(xa+) =(xal+)z [xa+ in (1 + xa+)} (.46)

rl(xa+) (xa+)1{ (l+xa.,) 2

-2 3 (1 + xa+) + 3 in (1 + xa+)

1 + xa+
(4.47)



234 S. N. BAGCHI

{ ( + a# 5 z(xa+) (xa+) 3 - ( + xa+)

5+ i0 (I + xa+) I0 in (i + xa+) I + xa+

i i0+ (42(1 + xa +)z- ---.
el

The quantity f+ is the electrostatic free energy of the particular subsystem

in which a particular positive ion plays the role of the central ion. An identl-

cal derivation can be carried out for a negative central ion and will give a siml-

far result. However, for convenience of calculations, we treat the negative ten-

tral ion as if they were positive and replace + l(r), + Z[a) by-Z(r),-Z(a) respec-

tlvely. Hence in.solvlng (4.36) with (37-39) we shall get as coefficients of the

series (36) for the negative central ion, +B[, -B, +B. Thus the corresponding

expression for the free energy due to a negative central ion will be

z2e 2 z 3 e4
fel_ B? ’Da r(xa_) B2 (Da)2kT (xa_)

z e 6 z2e 2

+ B3 (Da)(kT) 2 (Xa-) 2na
(4.49)

+
Since the given system, in Debye’s model (cf. ref. [2]), is composed of N

independent identical subsystems and N identical subsystems, also mutually inde-

pendent, the total eleetrQst_atic.frae.energy._of the given.solution is hus given
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by el + N-felF
el N+f+

and the activity coefficient of a positive ion (y+) by

(4.50)

el
1 8Fin y+ kT N

fel el
l{fel + N

+ N, + N- f-
kT + N+ (4.51)

where

@el
N,$

8 X V{N + --}X V
(4.52)

fel fe_l
8N X{ + Xv _}V (4.53)

To compute these expressions we need the quantities X X X
N+’ N-’ V

given in

4. (ill). We also need the following formulae:

1.L 1" (.a) (xa) 1
{-a 2 r’ (xa)}

X X

4n (Xa) e(a) -n(xa)
)X X

a 3xa i+ (].+a) +xa (+xa) 2 } (4.55)
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a 6 9
a’- (xa) (xa) X-- (xa) / -(xa) { (1+xa) 2

lOxa-5(l+xa) +
l+)(a

+ 5 1
(+xaY (+xa))

Substituting these expressions in ($.51) we finally obtain

z2 e2 z:e+-+- r +in 7+ BI Da+kT (xa+) + B2(Da+) (kT)z (xa+)

+ z+6 z+2

+ B 3(Da+) kT)J (xa+) 2Da+kT

D--+kT r. (xa+) + N B2 "(Da’"+) 2"(kT) 2(9 <xa+)

z+e 6 z2e2

+ N+ B (Da+)3(kT)3 n (xa+) + N- Bq Da_kT E (xa_)

z3e
N B2 (Da)2(kT)Z 6) (xa_) + N B3 (Va) (kT) a (xa_)]’

{ _I av__} (4 57)
aN av aN+

Similarly, we have for in 7 the equation:

z2e2 z3e
in y_ B’ D’a kT r ()ca_)
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ZW6 Z2E2

B3 (Da) (kT) (xa_) 2Da kT

+IN B (xa+) + N S (a+)Da+kT (a) 2(kT) 2

z 3 e ze6
-N-B (Da)Z(kT)Z e (xa_) + N B3 (Da 13(kT) 3 a (xa_)].

.{_ + _X v
v } (4.58)

Thus using the standard relation we get the following expression for the mean

activity coefficient y+:

l-_lz, v+ + Iz+ln,
In y+ Iz.l,i + Iz_l (4.59)

This completes the number of expressions needed for the calculation of the mean

activity coefficient. The formulae hold good for all three cases and for any type

of binary electrolyte. The differences between the three cases arise from the

different expressions for X, {-+ + .X V+____} and {X___ + X V___ }
8N V 8N N 8V N

It is to be noted that by putting B B i; B2 B B3 B 3 0, in

(.37-39) we obtain the corresponding expressions for thellnear activity coeffi-

cient. From (4.36) it is obvious B B[ I.

Finally, a word of caution is necessary here. As shown previously (cf.

Bagchi [2]), for the calculation of the correct electrostatic free energy of the
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system one should use Debye-Hueckel’s original method of simultaneous charging

process and not the method proposed by Guentelberg.

5. AN AD HOC SOLUTION OF V21 f(1) FOR THE CALCULATION OF ACTIVITY COEFFICIENTS.

As would be evident from the previous section, for the calculation of the

excess free energy it is the value of the potential l(a) on the surface of the

ion which is of importance. Consequently, we need a convenient analytic express-

ion for %(a) in order to calculate thermodynamic properties. The eq. (2.14) is

too cumbrous for this. But since we know the exact numerical valu of l(r) and

%(a), in the section 4 we expressed %(r) in terms of a power series of IL(r). It

was found that in most cases only three terms of the series gave excellent re-

suits. The mean activity coefficients + reported in this paper had been calcu-

lated from the formulae given in section 4.

Previous to the work of Bagchi e__t a__l, (see refs. [13 &14]), the nonlinear

potential of the modified PB equation and the pertinent activity coefficients were

calculated by the method devised previously by Bagchi [20]. He used the so-called

"fit method" to obtain the nonlinear solution. Since it gave a simple closed ex-

pression, activity coefficients could be calculated easily by following DH method

of obtaining the excess free energy. Later on, Dutta & Sengupta [i0] and

Sengupta [i0] utilized this method for calculating activity coefficients for both

the distribution functions (i.i) and(l.3) of the modified DH theory. They claim

to have obtained good agreements between calculated and observed valuesfordefinite

values of a and b. But it might be noted that the values of b chosen by them lead

+
to physical inconsistencies for moderate concentrations, since (nob+ + n0bJ be-

comes greater than unity Further, as shown below (see Table 4), for given val-

ues of a and b, the values of %(a) and y+ obtained by the fit method in general

differ significantly from their exact values obtained from the rigorous analytic

solution of the PB equation. Nevertheless, the results calculated by the Cmlcutta
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school (cf. refs. [i0]) indicate that good agreement between calculated and

observed values of activity coefficients may be obtained by ad hoc method by using

suitable values of the parameters a and b which are also physically consistent.

The German school (cf. refs. [Ii] [12])also obtained good agreement, but they

always used the linear solution of the PB equation and a single value of the

parameters, namely, the average radius a of the hydrated ion and b a 3 i e

the model A treated here. This study revealed that, in general, there are signl-

ficant differences between linear and nonlinear values Further, in attempting

to obtain good agreement they had to use often unrealistic vlaues of a and b,

violating the criterion of physical consistency, namely (nb + nb) should always

be less than unity. However, all these investigations indicated that the modi-

fied DH theoy could lead to satisfacotry results which would also be physically

and mathematically consistent, contrary to the original DH theory, provided one

chose judiciously the parameters.

Consequently, in view of the convenience and practical usefulness of the

ad ho___c method, it would be desirable to present here an outline of this method

devised by Bagchi [20] before the analytic solution was obtained. We give the

results for the case of i-i electrolyte for the distribution function (i.i). The

formulae,however,are given for any binary electrolyte for the generalized distri-

bution function of type (I.i). It should be noted that the formulae given by

Dutta & Sengupta [i0] and Sengupta [I0] are not generally correct.

(i) The Non-linear Solution By The Ad Hoc Method.

We have to solve the equation

V2(r) 4e
Dkr 0 (r) (5.1)

0 is the charge density around a given central ion. It should be noted here that

for Boltzmann distribution of the original DH theory 0 becomes infinity for r / o,

contrary to the known physical results. The modified theory does not suffer from

this physical inconsistency.
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The eq, (5.1) can be solved easily for the two limiting conditions:

and / o. The first glves

v2I zm+

DkT z+z_
and 1m+ +

b_ z+{n(1 nb_) + n’(1 nob+)}
+

It should be noted that for (i.i) b+ b_ b.

In terms of the dimensionless variable xr, the solution of (5.2) is

(.4)

H
Xl() m_+( + + C)

where H and C are integration constants.

For / o, we have the equation

V2.2() X2X2()
Its solution is

A2() A exp (-)/ + B exp (+)/

Using the boundary conditions (2.2), we get

(.5)

(5.6)

(5.7)

zim2X’2(E) DkT(1 + a)’
exp (E Ea)/E

In view of the fact that the potential on the surface of the ion even at a

large radius a4 A does not satisfy the linearlity condition e/kT << i and

becomes greater tan unity if we use the solution 2 given by (5.8) (cf. Sengupta

[21]), it is obvious that the potential on the actual surface of the ion would be

given by the eq. (5.5). Previously, Bagchi [20] also used I for similar reasons.

(5.8)
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The integration constant H is obtained from the second boundary condition of

(2.2) and is given by

z 2XH ie + i (say)
m DkT 3 3

(5.9)

The other constant C was evaluated by fitting %1 ,%2 at a suitable point El where

they would fit in smoothly. It was suggested by Bagchi [20] that the two solu-

tions should have to be fitted at El where %1 %2 m
S

and

d% d% 2

d--- I= d-- so that their second derivatives at this point also

would become equal and consequently, the two curves would fit into each other

smoothly at this point. Following this method we get

1/3
{I (1 + 3H) -1 (5.10)

and

C 1/2 {I (i + gi)2/3} (5.11)

Thus the potential %1 is obtained concretely for any given system as a function of

r It should also be noted that the solution %1 given by eq. (5.5) has a mini-

mum value and consequently the potential %1 is not a monotonic function for

all values of r.

el
Now, following DH technique we get the excess free energy f+ of the subsys-

tem in which the central ion is a positive ion the expression

el kTm+ X + P +f+ 2 a+ (5.12)

I -I
where P 1/2 +7--tan /3 1/2 in 3 0.5551 (5.13)
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and

Q+(g+) 1/2 in [(i + g+) 2/3 + (i + g+)i/3 + I]

-1/2 (i + g+)2/3 i -I 2(1 + g)i/3 +i
-/ tan / (5.14)

Similar expression is obtained for a subsystem in which the central ion is a

negative one. The total electrostatic free energy of the given system is there-

fore

Fel + el N-felN f+ + (5.15)

The mean activity coefficient y+, according to Dutta & Sengupta [i0], for

b b is given bya a; b+i-i electrolyte and a+
m i x2a2 + (p + Q)(I 2n0B) + 2n0B Ein y+ {

where,

1 2nbB
2n0(I nob)

(5.16)

(5.17)

i 2/3
E {(i (I + g) }; Q+ Q_ Q (5.18)

Table 4 gives the values for l(a) and y+ calculated from this method (see

columns 5 and 7) as well as those calculated from the exact analytic solution of

the PB equation (columns 6 and 8) for a few specific cases both for models A and B

of the distribution function (i.i). Columns 3 and 4 also show the values of m and

rl (= $I/) where the two solutions II and 2 were fit. Note also the surprising

values of r I. Obviously, it has no physical significance and consequently this

’fit method’ should be considered as a mathematical trick only. Further the

results show that the "fit method" does not give the potential and the activity

coefficients correctly for a given model.

Consequently, the agreement claimed by Dutta & Sengupta [i0] has little mathe-

matical and physical justification, particularly in view of the facts that eq. 6

is not quite correct and their values of b lead to physical inconsistencies.

Since our principal interest is to calculate the potential on the surface of
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the ion, the aim of the ad hoc method was to evaluate the constant C in %1
(cf. eq. 5.5). This can also be achieved by setting %1 %2 at

%in (3H11/3 the minimum point of I vs. curve, instead of fitting the two

curves at some value of . Now, the values of r min/X, as expected, always lie
m

outside the surface of the central ion, (contrary to the case obtained by the "fit

method"). Also the values of A(a) for the model A become closer to the corresponding

exact values. For the model B, however, the values are not so good. These values

are also given in Table 4 in brackets.

and

In this case,

1/3
mln (3H) 1/3 gi

i zi2X exp(xai) exp E_n m2inC m- VkT(l * xai> %in 2

(5.19)

(5.20)

The electrostatic free energy for the positive central ion is given by

2/3 z e
(gl+/3el kTm+. [x2a2+ g+ ] __+f+ 4 Dag+i/3Eexp Xa+)]

z+ [I 1/3

Da+g-’’/-r ;
d’ exp ,g+ X a+) / (1 + y,.a+M)

0

(5.21)

similar expression is obtained for the negative central ion. The total excess

free energy is thus given by

Fel + _el N-felN f+ + (5 22)

The values of mean activity coefficients for these two ad hoc methods have not

yet been calculated accurately. But it appears that the a_d ho___c method where I is

put equal to ’2 at min seems more promising for calculating thermodynamic proper-

ties with adequate accuracy throughout the concentration range for both the models

A and B, provided one chooses appropriate values of a and b, which however must be

physically consistent. In a subsequent paper we shall examine carefully this ques-

tion on the suitability of the ad hoc method for obtaining the nonlinear potential
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on the surface of the ion and for calculating the properties of ionic solutions.

It must, however, be always kept in mind that the ad hoc method can be re-

commended only for convenience of calculation and in case of doubts, the results

had to be checked with those obtained from the exact method presented in sections 2,3

and 4.

Finally, it should be emphasized again that for any method, either the ad hoc

method or the exact method, one must choose the parameters (e.g. a
i
and b) in such

a way that they satisfy the criteria of physical consistencies at all possible

concentrations.
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6. A CRITICAL DISCUSSION ON THE UNCERTAINTIES INVOLVED IN THE THEORY.

In spite of theoretical and practical justifications as well as a posterlorl

verification of the modified DH theory, several questions have to be answered

satisfactorily before we can apply the theory of ion-atmosphere successfully to

actual concrete cases.

First, how to select the various parameters entering into the theory, namely,

exclusion volumes b+, b_, b+_and the "effective" radii of the ions .(a+, a_), where

the boundary condition is to be applied?

This problem of the correct choice of parameters is intimately connected

with the problem of hydration of ions. Consequently, we have to know how many

water molecules shield the ions and what is the "effective" radius of the hydrated

ion?

We shall discuss this difficult question of the proper choice of parameters

below. But before that let us mention here two other related problems of theor-

etical nature which would help us to throw some light on the correct choice of

these parameters.

One is connected with the surface at which the continuity condition of normal

induction is to be applied. For a spherically symmetric potential $, (continuous

everywhere), and in absence of charge at the boundary surface, one can show from

classical electromagnetic theory

r
L (6.1)

a+ Da
2

where D is the dielectric constant of the medium Just outside, (6 is an infinit-

esimal quantity), the nutral surface of the sphere of radius a and Q, the total

charge inside the sphere of radius a. Consequently, it is the dielectric constant

of water outside the "effective" radius of the central ion that matters. Further,

it shows that we cannot take any arbitrary radius of the central ion. Either we
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can take the surface as that of the "bare central ion" or of the completely

"hydrated ion" so that the surface becomes neutralOne cannot go further out due to

the presence of other atmospheric ions and there should not be net "polarization"

charges inside the surface as long as one sticks to the usual boundary condition

I ziIe[ (( 2)-D%- 2
a

i
r=ai

The problem of the value of the dielectric constant cannot be resolved theor-

etically unless we have a better knowledge of the structure of water molecules in

the presence of ions. Consequently, at the present state of our knowledge we have

to decide about the value of the dielectric constant empirically and note the fact

that in this theory the medium is considered as a continuum with a fixed value of

the dielectric constant. We have always used the static value (78.3) of the

dielectric constant of pure water, though it is known [9] that the static dielectric

constant of aqueous solution changes considerably from that of pure water and the

dielectric constant of water surrounding the central ion may be as low as 5-15. We

calculated a few cases with D=50 and 5 reported by Hasted et al and found the

results to be far worse and untenable than those calculated with D 78.3.

The other problem is connected with the effect of hydration of ions on ther-

modynamic properties. In the ion-atmospher theory of solutions the effect of

hydration Is taken fully into account by the choice of the "effective" ionic

radii and the exclusion volumes.

But it is worthwhile to mention here again, (see Bagchi [2]), that some

authors, instead of using the modified DH theory, had attempted to get closer

agreement with experimental values of activity coefficients by calculating the

contributions from the free energy of the DH theory as well as that from hydration

energy. But hydration energy can have no effect on the activity coefficients of
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electrolyte solutions, since this is already present in the limiting case where

DH theory is supposed to be strictly valid. In the change of activity coeff-

icients with increasing concentrations, it is not the hydration energy which comes

but the heat of dilution, a quantity whose magnitude cannot explain the differences

between the actual activity coefficients and those calculated from DH theory.

(i) Discussions on the Choice of Parameters.

In the modified theory we have to choose the parameters r+, r_, a+, a_, b+,

b_, b+_. The values of bare ionic radii, r+, r_, are quite well known. But in

the solution, due to hydration and because of the fact that in the theory we are

treating the medium as a dielectric continuum, we have to determine the effective

ionic radii. Further, even if we could know the values of these effective ionic

radii, the question remains: What would be the value of a+ where the second

boundary condition is to be applied? From the discussions above, it would be

evident that we cannot answer this last question unequivocally. For the moment,

let us assume that these values are known exactly.

We have still to choose the exclusion volumes b+, b_ and b+_. Due to elect-

rostatic field, ions of like signs will, on the average, be further apart than

ions of unlike signs. In order to determine interionic distances correctly, we

have also to know the positions and number of water molecules in between the ions.

In princ.iple, the distance of closest approach, (the average value), of the

ions and the arrangement of water molecules in the solution could be obtained

experimentally from careful quantitative x-ray diffraction studies of ionid

solutions and the correct analysis of the radial distribution functions (RDF).

Unfortunately, systematic and careful investigations of ionic solutions at various

concentrations are not available. Accurate RDF curves have been given by Brady

[ 22] but only for two concentraions of KOH solutions and one each for KCI and LiCI

solutions. Further, the curves have been analysed by the conventional method which,

as had been proved before [23], is neither correct theoretically nor adequate to
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decipher quantitatively the details of interatom!c distr%but%Qns Nevertheless,

for lack of any satisfactory data, we shall discuss here Brady’s Tesults in order

to get a fair idea what would be the resonable values for the closest distance of

approach of the ions in the solution.

For KOH there are two pronounced peaks, one at 2.87A (or 2.92A,
depending on the concentration) and the other at 4.75A. The latter one corres-

ponds to the second nearest neighbour-distance in water. The ionic radii of

both K
+

and OH- are 1.33A and the radius rH20 of water molecule is 1.38A.
Consequently, we find that the first peak could very well be due to the distances

H20 H20; K
+

H20; OH- H20; K
+ OH-.

In the case of KCI solution, there is a prominent peak at 4.75A which

obviously is due to the second neghbour distance between water molecules, and

another prominent pk (with a shoulder on the ’left) at 3.16A. We have fr the

known radii, H20 C1 3.2A0; K Cl 3.14A, K+ H20 2.71A. The shoulder

+
at the left side of the first main peak presumably indicates the K H20 distance.

In both cases, the available analysis of the curves do not eliminate the

possibility that he closest distance between the oppositely charged ions is not

the sum of their individual radii but corresponds to the distance between opposite

ions separated by a water molecule. In a close-packing arrangement without water

molecules, we would have the distance of separation between the opposit,ely

charged ions r+_ r+ + r_, and that between like ions r+_, In ’the presence of

water molecules, the most likely values would be (r+ + 2rH20+r_) bet%een two

unllke ions and 2 (r++rH20) between two positive ions and 2/ (r_+ rH20)
between two negative ions.

Complications would arise if the sizes of the two unlike ions differ con-

+
siderably, as in LiCl. In such cases, as is already known, the small Li ion

can come into the interstices of tetrahedrally arranged water molecules and the

large CI ion can break the tetrahedral structure of water molecules.
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Consequently, if the ions are distributed in sequence as envisaged in the

derivation of the distribution functions (1.3), (el. ref. [5]) one could det-

ermine the "effective" volume of an ion quite reasonably. The difficulty comes

in when we want to calculate Boltzmann’s exclusion volumes needed in the theory.

As discussed previously (cf. Bagchl [P]), even for simple systems llke hard

spheres and fused alkali halides, the problem is not yet solved. For solutions,

a picture of the possible motions of different kinds of ions would at once con-

vince any one that it is almost impossible to estimate the numerical values of

the exclusion volumes even if we had exact values of interionic distances. Further,

as we have noted before (cf. [2]), the distribution function (1.3) suffers from

several other difficulties and inconsistencies. Nevertheless, some results

obtained from this distribution function with definite values of the parameters

have been calculated to demonstrate that, apart from these theoretical difficulties,

the calculated results cannot possibly agree with the experimental values, even if

we had correct values of th three exclusion volumes, b+, b_ and b+._. Further,

it is likely that any possible value of b+ would lead to physical inconsistencies

because (n b+ + nb_) would be greater than unity.

As noted before, (cf. [2]), the correct distribution function is given by

the expression (I.i). Nevertheless, due to these uncertainties,for a satisfactory

agreement between the calculated and experimental results we have to find empiri-

cally suitable values of these parameters. But the choice must be physically real-

istic and consistent. This does not mean that the ion-atmosphere theory used

with the distribution function (i.i) isnot theoretically rigorous bnt only indicates

the difficulties as regards the choice of the exact values of these parameters, which

are mathematically and physically well defined.

(ii) Physical Significance of X.
2

Mathematically, the parameter X is defined by f(o)-- X a positive quantity,

(see eq. 2.6), and it appears in the solutions (2.12- 2.16) of the differential

equations (2.1 and 2.17). It is obvious from these solutions that the correct
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physical significance of X lles in the fact that it determines the slope and range

of the effective potential around the central ion due to the presence of other

charges. Further, this effective potential has a much shorter range than the

Coulomb potential mainly due to the shielding effect of opposite charges. The

parameter X is mainly responsible for the fact that a system of charged particles

interacting with Coulomb forces becomes physically and mathematically consistent.

It should also be again emphasized that this parameter can come naturally only

2through the differential equation of PB type.. The expressions for X in the three

versions of the ion-atmosphere theory are given in eqs. @ .12), (4 .15) and (4.18)

respectively.

But the usual physical interpretation, namely, X-I measures the radius for the

ion-atmosphere outside the central ion, obviously cannot be true generally. In

order to prove this, let us, for simplicity, consider (4.15) and (4.18) for i-I

electrolyte. In this case, we have
2 2 i 2

(1-nob) E2
7. n z 8E2 n n+=n =n (6.3)X X D X D DkT i

o i-DkT o o o o

For i-i electrolyte at c=10 N,XD-I=0.96A, well inside the volume of alkal ions,

+ -i +
except Li For c 20 N, XD would be also less than the radius of Li The values

-i
become still less for 1-2, 1-3, 2-2 ions, e.g. XD 0.39 for 1-3 salt at i0 N. In

-i -Ithe case of fused alkali halides X as well as XD always lie inside the volume of

the central ion. For example, for KCI, we get X-I=0.28AQ XD-I=0 24AO (cf ref [2])

The usual attempt to prove the consistency of the obvious condition of electro-

neutrality, namely, the total atmospheric charge should be equal and opposite to

the charge of the central ion is also mathematically inconsistent since for the

actual charge density one should use the complete nonlinear potential and not the

linear potential. (For the conventional interpretation see Falkenhagen [II] and

also Fowler & Guggenheim [24] ). The condition of electro-neutrallty is always

satisfied since f(o)=o for all cases.
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7. CALCULATIONS

(1) Choice of Parameters

In this paper, only a few cases involving the distribution function (1.3)

have been calculated for the corresponding values of ’a’ with the definite models

given by:

4 3
b+ +_; +_=a++a_ 2a (7 .i)

b+= b . +3 {l_n
+- 4

o (17/96) +3}_ (7.2)

0 or, 2Va (7.3)O+ 2(a+ rH2
Obviously, for any concrete case these relations are not at all justified. For

example, we know definitely that the radii of positive and negative ions, (r+), are

different and, usually, only the cations are hydrated. Further, there is no

a priori reason to assume r+ a+;r_=a_. The expressions b+_, b+ given in (7.1)-

(7.3) have been proved to be physically unrealistic. For example, for i-i elect-

rolyte even for a small ’a’ (=1.5 A), the total exclusion volume becomes greater

than unity for c=5N. This is obviously due to the fact that the overlap-correctlon

17 n_+ b+) (cf. 7 2) given by Dutta [25] cannot be correct for highfactor y-- (i- o

concentrations. Further the correct b+_ should also be obtained by applying a

a proper overlap-factor to (7.1).

For the distribution function (i.i) we have also taken r+ a, the distance

from the centre of the central ion where the second boundary condition is applied.

in this case, we have used two models for exclusion volumes. Both will lead to

satisfactory results provided "a" is suitably chosen and the exclusion volumes

are corrected appropriately. But for convenience of calculations and comparison

we have used throughout fixed values of the single exclusion volume b.

In model A, we have chosen

4 3
b= -- ’0 (7.4)

where
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= 2

In this case the mean exclusion volume of the ion is taken to be the effect-

ive physical volume of the ion. This also leads to physical inconsistencies for

a=4.0A. Remembering the fact that the volume within this surface should not

contain any polarization charges, it is highly unlikely that both the ions .could

/
have such high values of’a’. For example, in the case of K a+ may be equal to

4.1A but for i- then a must be 1.81A4. Further, this shows that even the average

volume of the hydrated ion is greater than the correct exclusion volume b.

In model B, we have used the relation

4 3

but now, = a+z.H20
(7.6)

(7.7)

In this model B, we have therefore implicitly assumed that there is always, a Mater

molecule between two unlike ions. X-ray data do not preclude this model. The

fact that most of the cations are permanately hydrated suggests that this model

might correspond to the actual situation in ionic solutions, provided one uses diff-

erent values of a+ for the two ions, ely, a+=r+ or r + 2 rH20 and a r

Nevertheless, (n+b+ n- b) becomes greater than unity, (physically untenable), even
o o

A c=4N) Thlsfor reasonable values of the effective radius of the ion, (e.g. a 2.5,

points out clearly that the total exclusion volume needs an overlap-correctlon, not

considered heze.

For the original DH theoy, we have the only parameter a+, the effective radii

of the ions and s such discrepancies do not arise. But the calculated results

are not even qualitatively correct, contrary to those oh’rained from eq. (I.i).

(ii) Procedures for Calculations.

The procedures for the calculations are the same for all three cases. The values

of the physical constants have been taken as:
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Number of each ion p.er cc of normal solutlon 6.02 x 1020;

Boltzmann’s constant k 1.38047 x 10
-16 erg/K;

Electronic charge e=4.8029 x I0
-I0

e.s.u.;

=3.14159; 298K; D 78.3.

All the results have been calculated for fixed values of ’a’ at definite

molar concentrations c. For example, we had taken

a 0.5 A A A A A A A1.0 1.5 2.0 2.5 3.0 A; 4.0 5.0

c 0.01 N; 0.i N; 1.0 N; 2.0 N; 3.0 N; 4.0 N; 5.0 N

For each of the above radius and concentration the quantities % (a), % L(a), (Y+)L’
y+ have been calculated. We had also calculated k(r) for various values of r/a.

These results had also been shown in graphs, but for lack of space neither the

tables nor the graphs are reproduced here. Only a few curves illustrating the

typical nature of the function are given here.

The calculations proceed in the following manner. For a given radius and con-

centration, the quantities X
, f (o), f(3)(o),., are calculated. The only con-

dition applied here is that X
2

be positive. This is always the case for DH theory.

In the modified theory, we sometimes get X2<0, if the concentration and the ex-

clusion volume are large enough. When this is the case, no further calculations

are carried out as X2<0 is a physical impossibility for ionic solutions and this

also indicates that the size of the exclusion volume used is physically unrealistic.

We did not proceed further if (no+b++n .b_) becomes greater than unity since such

values are physically untenable.

Next we calculate the recurslon coefficients Xl(r), X2(r), X3(r),... Whenever

f’(0)=0, we calculate’Xl(r), X3(r),... for r going from r a to r 7a in steps of

0.1a. When f’(0) 0, we calculate (r), X2(r), X3(r),... for r varying from r=a

to r=9a in steps of 0.1a.

We then perform the, numerlcal integration of eq. (2.14) to obtain l(a) and %(r)

is obtained from the reeursorelatlon (2.18). This enables us also to compute
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the charge densities as a function of the distance from the central ion. Our next

task is to calculate the activity coefficient. For convenience, we use the per-

turbatlon series given by eq. (4.36) and determine only the first three coefficients

BI, B2, B3 from eqns. (4.37- 4.39. This gives y+ to a reasonable degree of accuracy,

(cf. eqns. 4.45-4.53).

(iii) Critical Assessment of Calculations

First, in the recursion relation

%(r) Xl(r) %(a)+ X2(r) %2(a)+ (2.18)

we take as many terms as necessary to obtain accurate results. In all our calcul-

ations we used only the first three recursion coefficients, XI, X2, X3. In a few

cases, we tested to see if the terms containing X4, XS, X6, X
7
would make a sign-

ificant contribution and came to the conclusion that it was not worthwhile to in-

clude them.. The difference, though noticeable, was only a small percentage of l(a).

For a 0.5A this difference was the largest but amounted to less than 1%. Con-

sequently, in order to save computer time, we always took the first three terms.

Another source of error is involved in the use of perturbation series

%(r) 7 Bnl,n (r)
n=l

needed for the convenient calculation of the activity coefficient.

(4.36)

We have always used the first three terms and the coefficients have been cal-

culated from the conditions (4.37-4.39).

For values of ’a’ less than IA the first three terms of this series do not

give a very good fit with the accurate %(r) calculated from the recursion relation

mentioned above. Better fit can be obtained if one takes two more terms and deter-

mines the coefficients B4 and B
5
from the conditions

%(rl): E B n (r)
n=] n %L i

5
dod%l Z B

I n:l
n rXL

r=rI
r=rI
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We tested these for a few values of rI, r
2,

etc. not much greater than ’a’ and

found that %(r) beca,me sufficiently accurate. But we did not use these higher

terms for calculating activity coefficients, since the relevant formulae became

too cumbrous. For ’a’ greater than IA, the series (4.36) with the first three

terms gives good results for %(r) over the entire range of .r, generally within 1.5%.

Near the surface of the ion the accuracy is even greater so that by taking the

first three terms of this series we get sufficiently accurate values for the mean

activity coefficient.

8 RESULTS

Due to lack of space, it is not possible to reproduce here the voluminous

results contained in 35 Tables and 120 graphs for the three distribution functions.

Further, since the results were calculated for fixed values of relevant parameters,

not meant to be the actual parameters for concrete cases, it would also not be very

useful for practical purposes to reproduce here all these results. It must be

repeated here again that the values calculated in this study were not intended to

show agreement between calculated and experimental results., but to choose a posterlorl

the most suitable and also theoretically and physically consistent distribution

function. Consequently, we present here very briefly some results to illustrate

the nature of the relevant values obtained from all the theories of ion-atmosphere

used in the theory of strong electrolytes and note some of their striking properties

not revealed before.

These results were calculated by my various part-time undergraduate students

during the period 1968-1973. I would like to express my thanks to all of them, in

particular to M. Pllschke who initiated the computer programme for calculations which

were followed by others. I would also wish to thank the directors of the computer

departments of Concordla University, McGill University and Montreal University for

providing the computer facilities.
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(i) The Distribution Function (1.3)

Calculations using thls distribution function had not been done exactly before.

Previously, Sengupta [i0] calculated a few values of activity coefficients with

this function, but with the approximation b+-b+_. This approximation is physically

inconsistent with the derivation of thls distribution function, (cf. ref. [5]).

Moreover, he used the "fit method" to calculate the nonlinear potential which, as

we have shown before,does not give reliable results Further, the exclusion volume

which he used leads to physical inconsistencies, namely, the total exclusion volume,

(no+b++nb_) becomes greater than unity even with the overlap correction factor

introduced by Durra [2] for moderate concentrations.

We have calculated the relevant values with the parameters noted before, (see

section 7), for i-I, 1-2, 2-1 and 2-2 electrolytes. The calculations prove that

even for i-i electrolyte the total exclusion volume becomes greater than unity for

the reasonable value of a =l.5A" c=5.N a=2 0A" c=3 ON For a=4 0A and 5 0A
0

it becomes greater than unity even for c=l.ON. This proves convincingly that the

overlap--correction factor given by Durra [ 25] and also used here is not phys-

ically tenable. Further, for fused alkali halides, where the situation is not corn-

llcated by th_ presence of water molecules, the known shortest distances between

posltive-posltlve, (negative-negatlve), ions from the central ion would make the

exclusion volumes b+ physically inconsistent, even if they could be calculated exactly.

A closer scrutiny of all the calculated results indicates that this distri-

bution function can reproduce the qualitative nature of the expected experimental

results-but is unlikely to yield experimental values even if the exclusion volumes

could be properly corrected for the overlapping effect. Further, due to other diff-

iculties and inconsistencies inherent in this distribution function discussed

before, it is believed that the correct distribution function should be the expre-

salon (i.i) rather than (1.3). Consequently ,in order to save space we have not pre-

sented here results obtained from this distribution function (1.3).
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(ii) The Distribution Function (i.i) And The oltzmann Distribution of DH Theory.

(a) Nonlinear Potential %(r)

Except for a few physically unrealistic cases mentioned below, the nonlinear

potential %(r) vs r/a has the same functional nature for all three cases. Indlvl-

dual cases differ only in the magnitudes and slopes of the functions. A few typ-

ical cases for models A and B of the distribution function (i.i) are shown in

figures i to 6. In most cases the corresponding curves for the DH theory resemble

relatively more closely to the model A. In all cases both potentials and mean

activity coefficients differ significantly from the corresponding linear values.

For values of a > 2.0Athey tend to differ less, particularly for i-i electrolyte.

Potentials on the surface of the ion for some realistic cases are given in Table 5.

Exceptional cases are observed for very mall values of ’a’ and large values of

c where %(r) becomes negative at r/a> 1.0 and, after reaching a minimum quickly,

approaches the value zero. A typical case is shown in Fig. 7 for the model B.

Qualitatively similar features were obtained for the following cases.

Model B

i-2 electrolyte for a 0.bA; c=3.0N; 5.ON

1-3 and 2-1 electrolyte for a 0.bA; c 1.0N, 3.ON, 5.ON

2-2 electrolyte for a 0.bA; c I.ON, 3.ON, 5.ON,

and a 1.0A; c I.ON, 3.ON

2-3 electrolyte for a 0.5A; c 3.ON, 5.ON

and a 1.0A; c I.ON, 3.ON, 5.ON

3-1 electrolyte for a 0.5 & 1.0A; c 3.ON, 5.ON

%(r) vs r/a were not calculated for 3-2 and 3-3 electrolyte for small values

of a.

Model A:

All the curves showed regular features except the case of 2-3 electrolyte at

a =0.bA, c 5.ON where a very slight relatively flat decrease was noticed.
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Similar feature was also observed in the case of DH theory only for 3-1

electrolyte at a 0.5A, 1.0A and c 1.0N, 3.0N, 5.0N. (The values for 2.0N and

4.0N were not calculated). But here the potential becomes positive again before

decreasing to zero, see figure 7.

These novel features of the potential are obviously caused by the strong field

of the central ion and large excess of negative ions in the atmosphere so that the

total potential due to the atmospheric ions exceeds that due to the central (postive)

ion.

(b) Mean Activity Coefficients.

Nonlinear mean activity coefficients + for various cases are shown in figures

8-22. It will be noticed that both models of the distribution function (i.i) can

reproduce the qualitative features of the observed activity coefficients. The re-

sults also confirm the well known fact that the original DH theory cannot predict

even the qualitative behaviour of the observed activity coefficients. It might

however be noted that, contrary to the common opinion, it is found that activity

coefficients increase very slightly for high concentrations and large a. This is

presumably due to the full contribution of the nonlinear terms including the term

Fel_X V in kTln y+-.
V N+ N+

Fr physical reasons, I think, the correct distribution function for binary

electrolytic solutions is the expression (i.i) with a model similar to the model B

discussed here.Scrutinising the extensive data quantitatively I have come to the

conclusion that a close agreement between calculated and experimental values over

the entire concentration range can be achieved only by this model provided approp-

riate values of s+ and overlap -corrected b are taken into consideration for each

given system. It is important to note carefully that the value of b chosen should

not lead to any physical inconsistency, namely, the total exclusion volume

(no
+ X2b++ n b )should not exceed unity and that should not be negative, contrary

O

to the cases reported in the literature as well as encountered in this study for
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some values of a and c. This was evidently caused by the large values of bo

Finally, some special features of the activity coeffecients obtained from this

study are noted below.

For 2-2, 2-3 and 3-3 electrolytes, the nonlinear activity coeffecients become

vanishingly small for small values of ’a’ even for low concentrations. Table 6 gives

a few values. This evidently means that the ions are effectively undissociated.

Consequently, it proves directly the remark of Gronwall et al [19] that the ion-

association effect is already included in the ion-atmosphere theory and there is

no theoretical justification to treat this ion-association effect outside it and

separately, (cf. also ref. [2]).

But the most striking feature appears in extremely high nonlinear activity

coeffecients of 1-3, (and consequently 3-1), electrolyte for a=0,5 A and c=0.01N,

(see Table 7).

Although a high value as 500, (for HC04 at 16m [26]), has been reported such

a high value at this low concentration had never been observed, presumably because

such a small average ionic radius is not physically possible.

It is difficult to offer any satisfactory explanation for such a high value

for the hypothetical electrolyte with a=13,,5A. The fact that water dipoles near

the ions exert great replusive forces cannot be relevant for our case, since we

are dealing here with a continuous medium with D=78.3. Possibly, such a high value

eL
may be ascribed to the steep slope of F

N:I.
9. CONCLUS ION

A mathematically and physically consistent theory for solutions of strong

electrolytes cannot be based on the original Debye-ueckeltheory using Boltzmann

distribution. Even if one ignores theoretical inconsistencies of this theory,

calculations of activity coeffecients from the exact nonlinear potential of the

ion-atmosphere clearly point out that it cannot predict experimental results even
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qualitatively. Neither additional hypotheses, e.g., ion-assoclatlon, hydration

energy, nor ad hoc recipes mentioned before are permlssable in a rigorous theory.

A theoretically consistent theory had to be based on the modified DH theory in

which the Boltzmann distribution is replaced by the distribution function (I.i).

This distribution can provide a good agreement between theoretical and exper-

imental results for the entire range of concentrations, if one chooses carefully

the surface at a distance ’ai’ from the central ion where the continuity condition

is applied and the correct Boltzmann’s exclusion volume b.

The extensive results of this study suggest that for a good fit one should use

(1) the distribution function (i.I) with a fixed a
i
and b for a given system’;

the value of a
i

should be taken as the radius of the permanently hydrated

ion and the same for all concentrations;

4( 2rH2 + r )3
(iii) the value of b is given by b=Ybo; bo= r++

y is the overlap-correctlon factor, which may depend on the concentration.

It is extremely difficult to calculate y exactly and as yet it had not been

possible for the simplest possible condensed system. Once the correct b is found

either by calculation or by trial and error, the modified theory can predict all

thermodynamic and transport properties of ionic solutions, (as well as of fused salts,

cf. ref. [2]), without any ad hoc assumption outside the ion-atmosphere theory.

At the present state of our knowledge modified DH theory seems to offer us the only

way to tackle a system of charged particles interacting with Coulomb force in a math-

ematically and physically consistent manner.
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TABLE I: Expressions for Gs(r) for s-I to 7.

+ f(3)(O)/(2J) r-2(2!blb2b + blb32 + b2263 + blbs)

+ f"(O) r-1(blb6 + b2b5 + b3b).
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TABLE 2: Expressions for b (r) for s=l to 7s

b (r) exp

b2(r) f"(O)/(2!) X x-l.bl2 (x) sinh X(x-r)dx
r

-2 3b3(r) f(3)(0)I(3!) X- / x bl (x) slnh X(x-r)dx
r

+ f"(O)/(2!) X-I /x-lbl(X)b2(x) slnh X(x-r)dx

b(r) f()(O)/(4!) X
-I ffx-3bl sinh xCx-r)dx

+ f(3)(0)/(2!) X
-I Fx-2 b12b2 slnh X(x-r)dx

r
2 -i ]s inh X (x-r) dx+ f"(O)/(2!) X

-! [x-lb2 + 2x blb_
sbs(r) f(5)(0)/(5!) X

-I
I x b slnh X(x-r)dx
r

+ f(g)(0)/(3!) X
-’1 x-3b13b2 sinh (x-r)dx

r

I [x-2515’22 + x-2bl2b ] sinh (x-rldx+ f (3)
(o1 I(2 ,r) x,-

r x

+ f"(0) X-I /[x-lb b + x-lblb] sinh X(x-r)ax
r 2- (6) 5 (5)b6(r) X / [f (0)/(6!) x-516 + f (0)/(4!) x-blgb2

+ f()(O) x-3{bl 2’- b22/(2!2!) + bl3b3/O])}

+ f(3)(O) x-2{blb2b3 + bl2bq/(2!) + b23/(3!)}
+ f"(O) x

-1 (blb5 + b2b + b32/(2!)}] sinh X(x-r)dx

b7(r) X_ [f(7) (6) _5b 5b(0)I(7!) x-Obl 7 + f (0)/(5!) x 2r

+ f(5)(0) x-{2 b13b22/(4!) + blb3/(4[)}
-3 3 3+ f()(0) x {blb2 /(3!) + b12b2b3/(2 ’) + b b/(3’)}

+ f(3)(0) x
-2

{blb2b/(l!) + blb32/(2!) + b12bs/(2!) + bp2b3/(2!)}
+ f"(0) x-I {blb6 + b2b5 + bb}] sinh X(x-r)dx
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TABLE 3: Expressions for X (r) for s=l to 7s
-I

x(r) =a. r exp [-(r-a)]

X2(r) a2- exp (2Xa){r-lb2(r) X1(r) a-152(a)}
-IX3(r) a3 exp (3xa){r-lb3(r) -xl(r) a b3(a) } -2ax2(r)b2(a) exp (2xa)

X(r) a- exp (4xa){r-lb(r) Xl(r) a- b(a)}

-a2X2 (r) exp (4xa){b22 (a) + 251 (a) 53(a) } -3aX3 (r) 52 (a) exp (2xa)

X5(r) a5"exp (Sxa)’{r.-Ib5(r) Xl(r) a-lb5(a)}-4a X(r) b2(a) exp (2xa)

3a2" X3(r){exp (4xa) 522(a) + exp (3xa) 53(a)}

-2a3X2(r){exp (4xa) b(a) + exp (Sxa) b2(a) b3(a)}

X6 (r) a6 exp (6xa) {rI -Ib6(r) Xl(r) a b6(a)}

-a X2(r) exp (6xa){b32(a) + 2bl(a) bs(a) + 2b2(a) b(a)}

-a3 X3(r) exp (6xa){b23(a) + 3bl2(a)b(a) + 6bl(a)b2(a)b3()}

-a2 X(r) exp (6xa){6b12(a)b22(a) + 4bl3(a)b3(a)}

5a Xs(r) exp (6Xa)" {b (a)b2 (a)}

X7(r) a7" exp (Txa){r-lb7(r)- Xl(r)a-lba)}
-6a X5(r) exp (7xa)" {bl5(a) 52(a)}

-Sa2X5(r) exp (7Xa)" {bl(a) b3(a) + 2b13(a) b22(a)}

-4a3X(r) exp (7xa) {bl3(a)b(a) + bl(a)b23(a) + 3b12(a) b2(a) b3(a)}

-3aX(r) exp (7xa) {bl2(a) b5(a) + b22(a) b3(a)

+ b32(a) bl(a) + 2bl(a) b2(a) b(a)}

2aSX2(r) exp (Txa) {bl(a)b6(a) + b2(a) b5(a) +b3(a bb(a)}
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TABLE 4: Potentials on the surface of the ion and the mean activity coefficients
calculated by the Ad hoc method.

a(A) C(N) m rl(A) (a)
Ad ]hic method Exact Ad hoc ’method Exact

4Model A: b = a3

1 5 40,163 0.291 8,463 3.604 1,952 0.203

(1.26) (3.563)

2 5 5.513 1.233 2.167 1.470 0.537 0.479

(2.52) (1.251)

3 5 2.227 2.213 1.073 0.859 1.678 0.303

(3.78) (0.709)

4 3 2.002 2.781 0.896 0.681 0.891 0.409

(5.39) (0.564)

5 1 2.316 3.018 0.722 0.607 0.878 0.784

(6.30) (0.508)

Model

1 5 3. 544

2 5 2.001

3 2 2.048

4 1 2.097

5 0.1 8.170

4 3=- (a + r2o;
1.119 4.295 4,311 0,261 0.260

(2.44) (3:891)

1.869 1.746 1.778 0.537 0.4 95

(3.60) (1.505)

2.282 1.218 1.168 O. 728 O. 607

(4.81) (0.966)

2.635 0.997 0887 0.780 0.688

6.03) (0.862)

1.158 1.4 58 0.948 I. 025 0.788

(7.27) (0.799)

The values within the bracket ( ) were calculated from th condition A A2 at mln"
All the values of thl.s table were calculated by N. MukerJl.
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TABLE 5

1.5
1.5
2.0
2.0
4.0

1.5
1.5
2.0
2.0
4.0

1.5
1.5
2.0
2.0
4.0

1.5
1.5
2.0
2.0
4.0

1.5
1.5
2.0
2.0
4.0

c()
models:

1.0
5.0
1.0
5.0
1.0

1.0
5.0
1.0
5.0
1.0

1.0
5.0
1.0
5.0
1.0

1.0
5.0
1.0
5.0
1.0

1.0
5.0
1.0
5.0
1.0

Potentials calculated from the exact solution of the distribution (I.I)
and for DH theory.

3.23
2.48
2.20
1.74
0.88

3.00
2.16
2.01
1.44
0.75

2.83
1.96
1.88
i .27
0.67

5.99
4.32
4.02
2.88
1.50

5.65
3.91
3.75
2.55
1.34

%L(a)
DH

i-i Electrolyte

3.20
2.29
2.17
1.49
0.81

3.20
2.27
2.16
1.45
0.77

1-2 Electro]

2.98
2.05
1.99
1.31
0.71

2.98
2.03
1.98
i .28
0.69

2.16
1.78
0.89

yt,e

2.48
2.01
1.75
1.39
0.72

2.81
I. 88
1.86
i .18
0.64

1-3 Electrolyte

2.81
1.86
1.85
1.16
0.63

2.08
1.57
1.34
0.76
0.21

2-1 ElectrolYte

5.95
4.09
3.97
2.61
1.42

5.95
4.06
3.97
2.56
i .37

6.03
5.22
4.19
3.56
1.66

2-2 Electrolyte

5.62
3.75
3.71
2.36
1.28

5.62
3.73
3.71
2.32
1.25

5.01
4.12
3.35
2.79
1.35

2.98
2.18
2.08
1.47
0.81

2.22
1.62
i. 64
i .14
0.67

1.61
1.16
1.16
0.74
0.29

5.30
4.02
3.82
2.79
1.53

3.46
2.80
2.70
2.04
1.22

DH

2.96
2 .ii
2.06
i .40
0.76

2.16
1.54
1.60
1.07
0.63

1.66
1.21
1.28
0.87
0.54

4.97
3.61
3.66
2.51
1.43

3.00
2.28
2.42
1.72
1.12
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c Na(A) !moes

1.5
1.5
2.0
2.0
4.0

1.5
1.5
2.0
2.0
4.0

1.5
1.5
20
2.0

1o5
1.5
2.0
2.0
4.0

1.0
5.0
1.0
5.0
1.0

1.0
5.0
1.0
5.0
1.0

1.0
5.0
1.0
5.0
io0

1.0
5.0
1.0
5.0
1.0

5.39
3.62
3 54
2.32
i .23

8.49
5.87
5.63
3.82
2.01

5.43
5.32
3.48
1.85

7.76
5.09
5.06
3.22
1.72

L(a)

Table 5 (contlnued)

2-3 ElectrolTte

5.37
3.50
3.52
2.18
1.19

5.36
3.48
3.51
2.15
1.16

4 65
3 46
2 79
2 24
i O0

3-1 Electrolvt..e

5.63
5.58
3.55
1.93

8.43
5.59
5.56
3.49
1.88

9 67
8 26
6 60
90l
3 20

3-2 Electrolyte

8.05
5.25
5.27
3.28
1.78

8.04
5.22
5.26
3.23
1.74

5.47
4.69
2.27

3-3 Electrolyte

7.73
4.94
5.03
3.06
1.67

7.72
4.92
5.02
3.03
1.64

5.16
5.23
4.88
3.58
1.71

2.43
2.07
1.94
1.50
0.88

6.43
6.29
4.83
2.91

5.23
5.28
4.65
3.40
2.03

4.61
3.06
3.12
2.48
1.44

DH

2.14
1.65
1.78
1.30
0.91

6.57
4.85
5.03
3.45
2.05

3.51
2.75
2.94
2.16
1.51

2.41
1.92
2.06
1.56
1.18
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TABLE 6:" Extremely Small Values of Mean Activity Coefficients.

0.5

1.0

2.0

0.5

1.0

2.0

0.5

1.0

2.0

model B

0.521

0.529

0.543

0.336

0.346

0.363

0.176

0.192

moeZ A DH

2-2 Electrolyte

0.521

0.529

0.543

0.521

0.529

0.543

2.-3 Electro.!yte

0.336

0.346

0.363

0.336

0.346

0.363

3-3 Electrolyte

0.168 0.168

0.176 0.176

0.192 0.192

model B

1.17 E-03

2. i0 Er02

0.168

8.76 E-05

1.81 E-03

3.42 E-02

2.51 E-06

9.66 E-04

Y+
modl A

5.83 E-07

2.98 E-03

0.127

9.87 E-10

8.05 E-05

i. 80 E-02

i. ii E-17

i. 03 E-08

2.61 E-04

DH

3.55 E-07

2.24 E-03

0.115

5.47 E’I0

5.27 E-05

i. 43 E-02

5.58 E-18

6.03 E-09

1.81 E-04

0.5

1.0

2.0

TABLI 7: Extremely HiS:Vmlues of .Mean Activity Coefficients.

Ol

Ol

Ol

0.613

0.620

0.633

1-3 Electrolyte

0.613

0.620

0.633

0.613

0.620

@.633

6.02 E03

3.72 E01

2,01

1.27 E08

2.57 E02

2.33

1.67 E08

2.57 E02

2.05

(The symbol Eon means I0
n

and E-on means i0-n)
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