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ABSTRACT. For plecewise linear approximation of variational inequalities asso-

ciated with the mildly nonlinear elliptic boundary value problems having auxiliary

constraint conditions, we prove that the error estimate for u-uh in the W1’2- norm

is of order h.
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INTRODUCTION.

In this paper, we derive the finite element error estimates for the approx-

imate solution of mildly nonlinear boundary value problems having auxiliary con-

straint conditions. A much used approach with any elliptic problem is to reform-

ulate it in a weak for variational form It has been shown by Noor and Whlteman
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[i] that in the presence of a constraint, such an approach leads to a variational

inequality which is the weak formulation. An approximate formulation of the

variational inequality is then defined, and the error estimates involving the

difference between the solutions of the exact and approximate formulation in the

wl’2-norm is obtained, which is in fact of order h. This result is an extension

of that obtained by Falk [2] and Mosco and Strang [3] for the constrained linear

problem.

2. MAIN RESULTS

For simplicity, we consider the problem of the following type:

-Au(_x) F (x, u), x

u(x_) O, x
(2.1)

where is a convex polygon domain in R
n
with boundary and u , its

closure. The given function f(u) F(x_,u) C ( x R) is a real-value function

involving the unknown u. If f(u) is both antimonotone and Lipschitz continuous,

then it is known that there does exist a unique solution of (2.1); see Noor 4,

i HIp. 57-62]. We study this problem in the usual Sobolev space W2(fl) the space

of functions which together with their generalized derivatives of order one are in

L2(). The subspace of functions from HI, which in a generalized sense satisfy

o2
H
I

the homogeneous boundary conditions on fl, is Wl(fl) o

It has been shown by Tonti [5] that, in its direct variational formulation,

HI(2.1) is equivalent to finding u such that
o

H
Il[u] < l[v] for all v
o

where v

dn- 2 Inlo f (n)dn dn

(2.2)

a(v,v) 2F(v)
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is the energy functional associated with (2.1).

We now consider the case when the solution u of (2.1) is required to satisfy

C HIthe condition u _> where e () _< O on ; (see Glowlnskl [6, p.

IV. 2]). In this situation, our problem is to find

u eK _ef {v; ve HI, v > on },
o

a closed convex subset of H
1

see Mosco [7] ), such that u minimizes I Iv] ono

K. It has been shown by Noor and Whiteman [ i] that the minimum of I v] on K

can be characterized by a class of variational inequalities

a(u,v-u) > <F’ (u), v-u > for all v e K, (2.3)

where F’ (u) is the Frechet differential of F (u) and is in fact,

<F’ (u), v > /O f(u) v d. (2.4)

The finite dimensional form of (2.3) is to find uh
e such that

a(uh, Vh-Uh) > <F’ (Uh) vh- u
h

> for all v
h

e . (2.5)

Here is a finite dimensional convex subset of H
Io; for the construction

of , see Mosco 3] Let be the convex polygon. We partition it into

triangles of side length less than h. We consider S
h
c Hio’ the subspace of

continous piecewise linear functions on the triangulation of vanishing on

the boundary . Let h be the interpolant of such that h agrees with

at all the vertices of the triangulation. For our purpose, it is enough to

choose the finite dimensional convex subset S
h I {v

h _> h on }. For

other choices of convex subsets , see Nitsche [ 8] where he has chosen

K S
h

We also want to know the regularity of the function u e K satisfying

(2.3). In this case Brzis and Stampacchia [9] have shown that, if lies in

both H
1
and H

2
then the solution u e K satisfying (2 3) also lies in H

2
o

Its norm can be estimated from the data:
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II-1]2 II ll 2.

Noreover, if u is the interpolant of u, which agrees with u at every

vertex of R, then u lies in Kh. It is well known from approximation theory

(see Strang and Fix 0] that

II--ll ehll ul[ 2,

Ne also note that in certain cases, the equallty holds instead of the

inequality in (2.3). This happens when v, together with 2u-v, also lies in

K. In this case, we get

a(u,v-u) <F’ (u), v-u>.

Finally let C and be the cones composed of non-negative functions

HI and its subspace Sh. Thus it is clear thaton
0

U u- is in C

Uh =Uh- h i i= ch.
From these relations, it follows that

U-Uh U-Uh + -h"
DEFINITION. An operator T on HI is said to be quasi-monotone if for all

o

z,u,v,w, E H1
0

< T-Tv, w-z> > 0.

We also need the following result of Mosco and Strang [ 3].

THEOREM i: Suppose tha U > 0 in the plane polygon and that U lies in
/-

both Hio and H2. Then, there exists a V
h

in S
h

such that

O_< Vh_< U in fl

and

II o-vh I] _< hll ul] 2

Now we state and prove the main result.

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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THEOREM 2. Let a(u,v) be a continuous coercive bilinear form and F’ (u)

H
Ibe a quasi-monotone operator on o" If V

h % and 2U-V
h e C, then

II u-% II 0(h),

where u and uh are the solutions of (2.3) and (2.5) respectively.

PROOF. Since both v + V
h

and 2u-v + (2U-Vh) are in K, we have

from (2.3) and (2.7) that

a(U,Vh-U) <F’ (u), Vh-U>. (2.11)

Letting v
h h + Vh and u

h h + U
h

in (2.5), we have

a(Uh,Vh-Uh) > <F’ (Uh) Vh- U
h

>. (2.12)

Using v + U
h

in (2.3), we get

a(u, Uh -U) _> <F’ (u), Uh-U>. (2.13)

From (2.11) and 13), we obtain

a(U,Uh-Vh) _> <F’ (u), Uh-Vh>, (2.14)

and from (2.12) and (2.14), we get

a(u-uh, Uh-Vh) > <F’ (u) F’ (Uh) Uh-Vh>
Thus, using the quasi-monotonicity of F’ (u), we have

a (u-uh, Uh-Vh) > O,

which can be written as
a(u-uh, U-) _< a(u-uh, U-Vh). (2.15)

Now by coercivity of a(u,v), it follows that there exists a

constant > 0 such that
2

lU- hll _<

a(u-uh, -h + a(u-uh, U-Uh) from (2.8)

_< a(u-uh,-h) + a(u-uh, U-Vh)

where 8 > 0 is a continuity constant of the bilinear form a(u,v).

Hence, it follows that
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< C( II , 11= + II II= by (2 6)

and (2.10), from which the required estimate follows.

Remark: The problem of deriving the L -norm estimates for the mIdly

nonlinear problems having constraint conditions is still open.
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