
Intern. J. Math & Math. Sci.
Vol. 4 No. 3 (1981)435-443

435

GROWTH OF HP FUNCTIONS IN TUBES

RICHARD D. CARMICHAEL AND STEPHEN P. RICHTERS
Department of Mathematics, Wake Forest University

Winston-Salem, North Carolina 27109 U.S.A.

(Received October 9, 1980)

ABSTRACT. Let C be an open convex cone in n dimensional real space R
n

such that

C does not contain any entire straight line. We obtain a growth condition on

functions in the Hardy spaces [lP(TC), I <_ p < oo, corresponding to the tube

T
C

R
n + iC in n dimensional complex space n.
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i. INTRODUCTION.

Throughout this paper < > denotes the inner product of points in R
n

or

n R
n

and 0 denotes the origin in Rn, that is the n-tuple of zeros. A set C

is a cone (with vertex at the origin in Rn) if y C implies %y g C for all

points y C and all positive scalars %. The intersection of C with the unit

sphere IYl i in R
n

is called the projection of the cone C and is denoted Dr(C).

A cone C’ such that p’rI) C pr(C) will be called a compact subcone of the cone

C. The dual cone C* of a cone C is defined as C* t R
n

<t,y> > 0 for all

y g C}. See [i, p. 218] for these definitions and further relevant facts concern-

ing cones.

Let C be an open convex cone such that C does not contain any entire straight
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line. Then C* has a nonvoid interior [i, p. 222, Lemma i and line 15] in Rn.
(Hence C is a regular cone in the sense of [2, p. 275] and [3, p. i01].) This fact

together with the first conclusion of [4, Lemma i] and a computation as in [4,(6)]

show that for each y E C and any p > 0 there is a > 0 depending on y g C
Y

such that

0 < IC* e-p<y,r]> dN < [
C*

e
-p6lylInl

dn < a (n-l)! (p6lyl) -n
n

for any cone C satisfying the above assumptions, a fact which is important for

this paper. Here is the surface area of the unit sphere in Rn. (Note that the
n

word "volume" in [4, p. 577, lines ii and 18] should be replaced by "surface

area".

Let the cone C satisfy the assumptions of the preceding paragraph. The Cauchy

kernel function corresponding to the tube T
C

Rn + iC is ([5, p. 201], [6])

2gi<z-t, N>K(z-t)
C*

e dN z g T
C

t g R
n

The Poisson kernel function corresponding to T
C

is ([5, p. 204, (18)], [6])

Q(z;t) K(z-t) K(z-t) IK(z-t)12
K(2iy) K(2iy)

T
C

R
n

z x+iy g t E

Both K(z-t) and Q(z’t) are well defined and satisfy various properties ([5], [6].)

For our purposes here we note that Q(z;t) is an approximate identity ([2, Prop. 2],

[5, Lemma 6]) and satisfies

0 < Q(z;t)
K(z-t) 12 2

K(2iy)
< (K(iy)) rC R

n
K(2iy)

z x+iy t (i.i)

with the second inequality following directly from the definition of K(z-t).

The Hardy spaces HP(C) 0 < p < corresponding to a tube T
C

R
n + iC in

n are defined in [2] and [3, pp. 90 91]. Note that H(TC) is the space of all

bounded holomorphic functions in TC.
R
nLet C

I {y yj > 0, j i }. Madych [7] has proved that if f(z)

HP(TCI), 0 < p < =, then there exists a constant M(f) depending on f such that
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n -i/p CIIf(x+iy) < M(f) N yj) z x+iy E T
j=l

(1.2)

In this note we prove a growth result for functions f(z) HP(TC) for certain

values of p and for a general class of cones C. Our result is as follows.

THEOREM. Let C be any open convex cone in R
n

such that C does not contain

any entire straight line. Let f(z) E HP(TC), i < p < =. For any compact subcone

C’ of C there exists a constant M(f;C’) depending on f and on C’ such that

T
C’If(x+iy) < M(f;C lyl -n/p z x+iy E (i.3)

In the special case of the THEOREM that C C
I Madych’s growth (1.2) is

CIbetter than (1.3) in that (1.2) holds for all points in the tube T Of course a

CIspecial case of the result (1.2) is if n i in which case T is the upper half

plane in I; and the growth (1.2) holds also for the lower half plane in i
with y replaced by IYl in (1.2). For arbitrary cones satisfying the hypotheses of

T
C’the THEOREM we are able to obtain (1.3) holding for all z g C’ being an

arbitrary compact subcone of C; and our THEOREM has interest for dimension n > 2

since the growth of Hp functions corresponding to the upper and lower half planes

in i is already known as noted above. Note that at least for the case p 2,

the hypothesis on in the THEOREM is needed to ensure that H2(TC) contains a

T
C

function that is not identically zero on [3, p. 94, Corollary 2.6], and wQ

further need this assumption for all p, i < p < =, in order to have Q(z;t) well

defined in our proof of the THEOREM which is given in section 2 of this paper.

Because of [3, p. 93, Corollary 2.4] there is no loss of generality in letting

the cone C be convex in the THEOREM for p 2; we assume C is convex for the

other p also for otherwise we would prove the THEOREM for lP(TO(C)), O(C) being

the convex envelope o’f the assumed open and connected cone C. HOO(TC) is by

definition the space of all bounded holomorphic functions in TC; hence we did

not include the case p in the THEOREM since the growth of HO(TC) functions

is known by definition.

In [4] we obtained the THEOREM for the case p 2 using analysis involving
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the Cauchy integral representation of functions in H2(TC). In this note we are

able to extend this growth result to the spaces HP(TC), 1 <_ p < , using the

Poisson integral representation of functions in HP(TC). The growth (1.3) is of

independent interest, but we are especially interested in it because it aids us

in analysis relating certain spaces of holomorphic functions in tubes having

distributional boundary values with H
p

spaces in tubes, a topic of research which

has proved useful in mathematical physics and which we are presently pursuing.

2. PROOF OF THE THEOREM.

We prove the THEOREM with the aid of two lemmas. Throughout this section Bu,v
R
n

R
n

denotes the angle between the two nonzero vectors u E and v E with this

angle being defined in the usual way.

LEMMA i. Let the cone C be as in the THEOREM. Let C be an arbitrary compact

subcone of C. There exists a constant A(C’) depending on C’ such that

K(iy) _< A(C’) lyl -n y C’. (2.1)

We give two proofs of Lemma i.

FIRST PROOF OF LEM i. For any compact subcone C’ of C choose an angle Yo
depending on C’ such that 0 < y < /4 and

o

Yo < inf {B u g C pr(C) v C’ pr(C’)}
u,v

where C (C’) denotes the boundary of C (C’); and Yo exists Let y g C’ be

arbitrary and put

R
n

< yoFy,yo {n n # 0 0 ! Bn y,

Then y F F is an open convex cone in Rn, and F C C because of
Y’Yo Y’Yo Y’Yo

the choice of Yo hence the corresponding dual cones satisfy C* C F*
Y’Yo

for the y g C’C C

Thus

-2<y N> I -2<y q> I -2<y,q>e dq < e dq eK(iy)
C*

r* r* ",,
Y’Yo Y’Yo

(22)

(The first equality in (2.2) is the definition of the Cauchy kernel K(iy), y C.)
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We switch to n dimensional spherical coordinates ([8, pp. 217 218], [9]) by

letting

where r Inl and

n r (2.3)

(2.4)

(cos(eI ,sin(81)cos(82) sin(el)...sin(en_2)coS(Sn_l) ,sin(el)...sin(en_2)sin(@n_I))

with n being the dimension; and

Put

0 < 0. < z j i n-2,

0<8 <2.
n-i

’ {(81 82 8
n i): q r e F*

Y’Yo
{0}, 0 < r < oo}

(2.5)

Noting the Jacobian of the transformation (2.3) in [8, p. 218] we obtain from

(2.2) that

-2<y D>K(iy) <_ e dq

r* \{o}
Y’Yo (2.6)

I 0 n-i -2r<y > n-2 3
r e sin (e l) sin

n-
(82)...sin(On_2) dr dOl...d0n_I

for y g C’ C C. It follows from the definition of F that for any q g * {}
Y’Yo Y’Yo

0 < 6rl < (1T/2) -Yo < 1T/2 (2.7)

so that r<y,> <y,q> lyl Inlco(Sn,y > 0 in the right side of (2.6). Thus

integration by parts (n-l) times on the improper integral with respect to r in

(2.6) yields

n-i -2r<y,>
r e dr

(n-l)

(2<y,>)
(2.8)

The defined in (2.4) satisfies I[ I. As q r varies over F* {5},
Y’Yo

< (/2) Yo < /2 so thatvaries over pr(* and from (2.7) 0 <_ 6,y_Y’Yo
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cos(By,y) > cos((/2) yo > O. Thus <y,> in the right side of (2.6), and hence

in (2.8), satisfies

<y,> lyllIcos(B,y)= lylcos(,y > lylcos((/2) yo > 0 (2.9)

Using (2.9) and (2.8) in (2.6), we have

K(iy) < (n-l)! I n-2 3

(2ly cos((/2)- yo))
n ’

sln (0 I) sin
n-

(2.10)

(02)...sin(0n_2) d01...d0n_I

for y C’ C C. From (2.5) we see that the integrand in (2.10) is a nonnegative

function over ’ and indeed over the whole of ’’ {(01,02 0n_l): 0 < ej < ,
j i, n-2, 0 < en-i < 2}; and the integral in (2.10) is a finite positive real

number. Thus we replace ’ in (2.10) by ’’ and obtain

K(iy) < A(C’)lyl -n (2.11)

where

A(C’) (n-l) I n-2 3
sin (

i
sinn-

(2 cos((/2) yo ))n ,, (@2)..-sin(@n_2) d@l.-.den_I

and the integral on the right is a finite positive real number. This constant A(C’)

depends on C’ since the choice of the angle Yo at the beginning of the proof

depends on C’. However, A(C’) does not depend on y C’; (2.11) holds for all

y C’ with C’ being any compact subcone of C. Thus (2.1) is obtained, and the

first proof of Lemma i is complete.

SECOND PROOF OF LEMMA I. Let C’ be an arbitrary compact subcone contained in

C. By the second conclusion of [4, Lemma i] there exists a (C’) > 0 depending

only on C’ such that <y,> > IYl DI for all y E C’ and all C*. This

inequality and the same calculation as in [4, (6)] yield

e d < e dD < e dK(iy)
C* C* R

n

n-In r e dr n (n-l)’. (2lyl) -n

for all y C’ C C, where is the surface area of the unit sphere in Rn. (As
n
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noted in the second paragraph of the Introduction, the word "volume" in

[4, p. 577, lines ii and 18] should be replaced by "surface area".) Thus (2.1) is

again proved with

A(C’) (n-l) (2)-n
n

depending on C’ C C since depends on C’. The second proof of Lemma I is complete.

LEMMA 2. Let the cone C be as in the THEOREM. There exists a constant B(C)

depending on C such that

K(2iy) > B(C) IYl -n y E C. (2.12)

PROOF. By the first conclusion of [4, Lemma i] we have that <y,> > 0 for all

y E C and all e C* {}, which is a nonvoid set by the discussion in the second

paragraph of the Introduction, under the assumptions on the cone C. Using this

fact, a change to spherical coordinates in n dimensions as in the first proof of

Lemma 1, and-a computation as in (2.8), we obtain for all y E C that

-4<y > -4<y,>e d e dK(2iy)
C* C* {}

(n-l)

(4)n
inn-2s (81 sinn-3(82)...sin(Sn_2) dSl...dSn_I

(2.13)

where T is defined in (2.4) and {(81,82,...,8n_i): r e C*{}, 0 < r < =}.

In (2.13) E pr(C*) and <y,T> > 0 for all y C. Thus for <y,T> in (2.13)

0 < <y,> lyl I’el=os(Sy,v) <_ lyl y e c.

Using (2.14) in (2.13) we get for any y E C that

I slnn-2(8 s (8) sin(Sn 2 dSl dSn i
K(2iy) > (n-1)’. inn-3

(4lyl)n i 2

(2.14)

(2.15)

The integral on the right of (2.15) is a finite positive real number, and (2.15)

holds for all y E C.. Further the integral in (2.15) depends only on the cone C

since depends only on C* which depends only on C. The integral on the right of

(2.15) is independent of y e C. (2.15) is thus the desired inequality (2.12) with

in
n-3B(C) (n-l)! (4)-n sinn-2(81 s (82)’’’sln(Sn-2) d81 dSn_1

The proof of Lemma 2 is complete.
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PROOF OF THE THEOREM By [2, Prop 4], given f(z) E HP(Tc) i < p <

there is a function h E LP(Rn) such that

f (z) IRn h(t) Q(z;t) dt z E TC.

T
C

Using this equality, the fact that the Poisson kernel Q(z;t) z e t E Rn, is

an approximate identity ([2, Prop. 2], [5, Lemma 6]), Jensen’s inequality

T
C

[I0, p. 91, 2.4 19] and (i i) we obtain for z x+iy E that

If (x+iy) P h(t) Q(z;t) dtJ p <

< I Jh(t) JP Q(z;t) dt <
(K(iy))2 IR

n K(2iy) R
n IN(t) Ip dt

(2.16)

Now let C’ be an arbitrary compact subcone of C. Using Lemmas i and 2 in (2.16) we

obtain constants A(C’) and B(C) such that

f (x+iy) P < (A(C’)) jy]-n I Jh(t)l p dt z x+iy TC’. (2.17)
R
n

The desired growth (1.3) with

LP
now follows by taking-the pth. root of both sides of (2.17). The proof of the

THEOREM is complete.
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