LNC POINTS FOR m-CONVEX SETS

MARILYN BREEN

Department of Mathematics The University of Oklahoma Norman, Oklahoma 73019 U.S.A.

(Received April 8, 1980 and in revised form September 4, 1980)

<u>ABSTRACT</u>. Let S be closed, m-convex subset of \mathbb{R}^d , S locally a full ddimensional, with Q the corresponding set of lnc points of S. If q is an essential lnc point of order k, then for some neighborhood U of q, $Q \cap U$ is expressible as a union of k or fewer (d - 2)-dimensional manifolds, each containing q. For S compact, if to every $q \in Q$ there corresponds a k > 0such that q is an essential lnc point of order k, then Q may be written as a finite union of (d - 2)-manifolds.

For q any lnc point of S and N a convex neighborhood of q, N \cap bdry S \notin Q. That is, Q is nowhere dense in bdry S. Moreover, if conv(Q \cap N) \subseteq S, then Q \cap N is not homeomorphic to a (d - 1)-dimensional manifold.

<u>KEY WORDS AND PHRASES</u>. Points of nonconvexity, m-Convex Sets. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 52.A20, 52.A40.

1. INTRODUCTION.

Let S be a subset of \mathbb{R}^d . The set S is said to be m-convex, $m \ge 2$, if and only if for every m distinct points in S, at least one of the $\binom{m}{2}$ line segments determined by these points lies in S. If the m-convex set S is not j-convex for j < m, then S is <u>exactly m-convex</u>. A point x in S is said to be a point of local convexity of S if and only if there is some M. BREEN

neighborhood N of x such that if $y,z \in S \cap N$, then $[y,z] \subseteq S$. If S fails to be locally convex at some point q in S, then q is called a <u>point</u> of <u>local</u> <u>nonconvexity</u> (lnc point) of S.

Few studies have been made concerning points of local nonconvexity for mconvex sets. Valentine [3] has proved that for S a compact 3-convex subset of \mathbb{R}^d with Q the corresponding set of lnc points of S, if int ker S $\neq \phi$ and Q \subseteq int conv S, then Q consists of a finite number of disjoint closed (d - 2)-dimensional manifolds. The purpose of this paper is to obtain an analogue of Valentine's result for m-convex sets.

The following familiar terminology will be used: For points x,y in S, we say <u>x</u> sees <u>y</u> via <u>S</u> if and only if the corresponding segment [x,y] lies in S. Points x_1, \ldots, x_n in S are <u>visually independent via</u> <u>S</u> if and only if for $1 \le i < j \le n$, x_i does not see x_j via S. Throughout the paper, aff S, conv S, ker S, int S, rel int S, bdry S, and cl S will be used to denote the affine hull, convex hull, kernel, interior, relative interior, boundary, and closure, respectively, of the set S.

Also, for points x and y , R(x,y) will denote the ray emanating from x through y , and for point x and set T , cone (x,T) will represent $\cup\{R(x,t)\,:\,t\,\in\,T\}\ .$

Finally, S will be a closed subset of R^d which is locally a full ddimensional - i.e., for s in S and N any neighborhood of s, dim(S \cap N) = d. And Q will denote the set of lnc points of S.

2. ESSENTIAL LNC POINTS OF ORDER K .

We begin with the following definitions for the closed set S and its corresponding collection of lnc points Q. The first definition is an adaptation of Definition 1 in [1].

DEFINITION 1. Let $q \in Q$. We say that q is <u>essential</u> if and only if there is some neighborhood N' of q such that for every convex neighborhood N of q with $N \subset N'$, $(S \cap N) \sim Q$ is connected.

DEFINITION 2. We say that $q \in Q$ has <u>order</u> <u>k</u> if and only if there is

514

some neighborhood N' of q such that the following are true.

- 1) Conv(Q \cap N') \subseteq S.
- 2) For every convex neighborhood N of q with $N \subseteq N'$, $(S \cap N) \sim conv(Q \cap N)$ contains at least one k-tuple of points which are visually independent via S and no (k + 1)-tuple of points visually independent via S.
- 3) For every convex neighborhood N of q with $N \subseteq N'$, dim conv(Q \cap N) = dim conv(Q \cap N'). If this dimension is d, then q \in int conv(C \cup (Q \cap N)) for each component C of (S \cap N) \sim conv(Q \cap N) If this dimension is d - 1, then q \in rel int (S \cap aff(Q \cap N)).

The following lemmas will be useful.

LEMMA 1. Let S be a closed m-convex set in R^d , with Q the corresponding set of lnc points of S. Then $Q \subseteq cl(S \sim Q)$.

PROOF. Suppose on the contrary that for some point q in Q and some neighborhood N of q, N \cap (S \sim Q) = ϕ . Then S \cap N \subseteq Q. Select x_1, x_1' in S \cap N which are visually independent via S, and let M,M' \subseteq N be neighborhoods of x_1 and x_1' respectively so that no point of M sees any point of M' via S. Since $x_1' \in Q$, choose x_2, x_2' in M' \cap S which are visually independent via S. By an obvious induction, we obtain m visually independent points x_1, x_2, \dots, x_m , contradicting the m-convexity of S. Our assumption is false and $Q \subset cl(S \sim Q)$.

LEMMA 2. Let N be a convex neighborhood for which $\operatorname{conv}(Q \cap N) \subseteq S$, let $x \in S \cap N$, and let Q_x denote the subset of $\operatorname{conv}(Q \cap N)$ which x sees via S. Then $\operatorname{conv}(Q_U \cup \{x\}) \subseteq S$.

PROOF. Let $y \in \operatorname{conv}(Q_x \cup \{x\})$ to prove that $y \in S$. Then by Carathéodory's theorem, $y \in \operatorname{conv}\{z_1, \ldots, z_{k+1}\}$ for an appropriate k + 1 member subset of $Q_x \cup \{x\}$, $k \leq d$. If $y \in \operatorname{cl} \operatorname{conv}(Q \cap N) \subseteq S$, the argument is finished, so assume that $y \notin \operatorname{cl} \operatorname{conv}(Q \cap N)$. Hence one of the z_1 points above must be x, and we may assume that $y \in \operatorname{conv}\{x, z_1, \ldots, z_k\}$, where $z_1 \in Q_x$ for $1 \leq i \leq k$. Further, we assume that k is minimal. Then $P = conv\{x, z_1, \dots, z_k\}$ is a k-simplex having y in its relative interior.

We use an inductive argument to finish the proof. Clearly the result is true for k = 1. For $k \ge 2$, assume that the result is true for all natural numbers less than k, to prove for k. Thus we may assume that every proper face of P lies in S.

Since y ${\it f}$ cl conv(Q \cap N), there is a hyperplane H strictly separating y from cl conv(Q \cap N), and clearly $\{x,y\}$ and $\{z_1,\ldots,z_k\}$ lie in opposite open halfspaces determined by H.

Let H' be a hyperplane parallel to H and containing y, and let L be a line in H' with $y \in L$. Then $L \cap P$ is an interval [a,b] where a and b lie in facets of P. Hence by our induction hypothesis, $[x,a] \cup [x,b] \subseteq S$. Clearly $Q \cap N$ and $\{x\}$ lie on opposite sides of H', so there can be no lnc point of S in conv $\{x,a,b\}$. Therefore, by a lemma of Valentine [4, Corollary 1], conv $\{x,a,b\} \subseteq S$. Thus $y \in S$ and the lemma is proved.

The following theorem is an analogue of Valentine's result for 3-convex sets.

THEOREM 1. Let S be a closed m-convex set in R^d , S locally a full d-dimensional, with Q the corresponding set of lnc points for S. If q is an essential lnc point of order k, then for some neighborhood U of q, U \cap Q is expressible as a union of k or fewer (d - 2)-dimensional manifolds, each containing q.

PROOF. Let N' be a convex neighborhood of q satisfying Definitions 1 and 2. The proof will require three cases, each determined by the dimension of $conv(Q \cap N')$.

CASE 1. Assume that for every neighborhood M of q with $M \subseteq N'$, dim conv($Q \cap M$) = d. We proceed by induction on the order of q. If the order of q is 2, then $S \cap N'$ is 3-convex, and $S' = cl(S \cap N')$ is compact and 3-convex. Letting Q' denote the set of lnc points of S', clearly Q' = cl($Q \cap N'$). It is easy to show that every lnc point of a 3-convex set lies in the kernel of that set, so Q' \subseteq ker S' and hence int ker S' $\neq \phi$. Also, since q satisfies Definition 2, $q \in int \text{ conv S'}$. Thus by [3, Lemma 4 and 5], there is a neighborhood U of q such that $Q \cap U$ is a (d-2)-dimensional manifold.

Inductively, assume that the result is true for order q < k to prove for order q = k. Since a closed m-convex set is locally starshaped [2, Lemma 2], without loss of generality assume that $S \cap N'$ is starshaped relative to q. Let V be a neighborhood in int $conv(Q \cap N')$ and select a point $p \in N'$ so that $q \in int conv(\{p\} \cup V) \equiv W$. Since $q \in int conv(C \cup (Q \cap W))$ for every component C of $(S \cap W) \sim conv(Q \cap W)$, we may select $x \in (S \cap W) \sim conv(Q \cap W)$ so that R(x,q) intersects int $conv(Q \cap W)$. Finally, select a convex neighborhood N of q, $N \subseteq W$, so that for all r in N \cap bdry $conv(Q \cap W)$, R(x,r)intersects int $conv(Q \cap W)$, $[R(x,r) \sim [x,r)] \cap N \subseteq conv(Q \cap W)$, and $[x,r) \cap conv(Q \cap W) = \phi$.

Let T denote the subset of N \cap conv(Q \cap W) seen by x . By the proof of Lemma 2, $\operatorname{conv}(T \cup \{x\}) \subseteq S$. Let K denote the closure of the set $\texttt{conv}(\texttt{T}\,\cup\,\{x\})\,\cup\,\texttt{conv}(\texttt{Q}\,\cap\,\texttt{W})$, with \texttt{Q}_k the corresponding set of lnc points of K We assert that $Q \cap T = Q_k \cap N$: By our construction, for r in $Q \cap T$, clearly $r \in {\boldsymbol{Q}}_k$, so $r \in {\boldsymbol{Q}}_k \, \cap \, N$. To obtain the reverse inclusion, for r in $\, {\boldsymbol{Q}}_k \, \cap \, N$, certainly r \in conv(Q \cap W) \cap conv(T \cup {x}) , so r is a point of N \cap conv(Q \cap W) which x sees via S , and r \in T . Now if r were not in Q , then r would not be an lnc point of S , so for some neighborhood A of r , S \cap A would be convex and hence disjoint from Q . Without loss of generality, assume that $A \subseteq N$. Since R(x,r) intersects int $conv(Q \cap W)$, select v in A \cap int conv(Q \cap W) \cap R(x,r) \subset int(S \cap A) and select w in (x,r) \cap A \subset S \cap A . Then since S \cap A is convex, r \in (v,w) \subseteq int(S \cap A) . Let H be a hyperplane supporting $\operatorname{conv}({Q}\cap W)$ at r , with x in the open halfspace ${
m H}_1$ determined by H . Using Valentine's lemma [4, Corollary 1], it is not hard to show that x sees S \cap A \cap H $_1$ via S , and since r \in int(S \cap A) , x sees some neighborhood A' of r via S , A' \subseteq A . But since A' \subseteq N , this implies that r \in int conv(A' U $\{x\})\subseteq$ int conv(T U $\{x\})\subseteq$ int K , contradicting the fact that

M. BREEN

 $r \in Q_k$. We conclude that $Q_k \cap N \subseteq Q \cap T$, the sets are equal, and our assertion is proved.

To complete Case 1, unfortunately it is necessary to examine two subcases:

CASE la. If $conv(T \cup \{x\})$ has dimension d , then by a previous argument the set K and the point $q \in K$ satisfy the hypotheses of [3, Lemma 4]. Hence for some neighborhood U' of q , $Q_k \cap U'$ is a (d - 2)-dimensional manifold.

Now let C denote the component of $(S \cap W) \sim \operatorname{conv}(Q \cap W)$ which contains x, and let S' = cl(S ~ C). Select a convex neighborhood M of q, $M \subseteq N \subseteq W$, so that S' \cap M contains no point of cone(x,T) ~ conv(Q \cap W). Then for y in (S' \cap M) ~ conv(Q \cap W), we assert that $[y,x] \notin S \cap M$: If $[y,x] \subseteq S ~$ conv(Q \cap W), then y \in C, impossible. And if $[y,x] \cap \operatorname{conv}(Q \cap W) \neq \phi$, then y would lie in cone(x,T), again impossible.

Thus S' \cap M has at most k - 1 visually independent points not in conv(Q \cap W). If q is an lnc point of S', then q is an essential lnc point of S' of order at most k - 1. Letting Q' denote the set of lnc points of S', Q' contains all lnc points of S \cap M which do not lie in Q \cap T = Q_k \cap N. By an inductive argument, for an appropriate neighborhood U of q, Q' \cap U is expressible as a union of k - 1 or fewer (d - 2)-manifolds which contain q. For simplicity of notation assume that $U \subseteq U' \cap N$. Then Q \cap U = (Q' \cap U) U (Q \cap T \cap U) = (Q' \cap U) U (Q_k \cap U) is a union of k or fewer (d - 2)manifolds, the desired result.

If q is not an lnc point of S', select the neighborhood U of q so that S' \cap U is convex, U \subseteq U' \cap N. Then Q \cap U = Q_k \cap U is a (d - 2)-manifold. This finishes Case 1a.

CASE 1b. Suppose that Case 1a does not occur. Hence $\operatorname{conv}(T \cup \{x\})$ has dimension $\leq d - 1$. By a previous argument for some neighborhood N of q, $Q_k \cap N = Q \cap T$. Also, since dim $\operatorname{conv}(Q \cap W) = d$ and dim $\operatorname{conv}(T \cup \{x\}) \leq d - 1$, it is clear that $Q_k \cap N$ is exactly the set of points of intersection of $\operatorname{conv}(Q \cap W)$ with $(\operatorname{conv}(T \cup \{x\})) \cap N$, so $T = Q_k \cap N \subseteq Q$.

Recall that N is a neighborhood of q satisfying the definition of essential,

Select points v,w in K \cap N , v < q < w , with v \in (x,q) and $w \, \in \, {\rm int} \, \, {\rm conv} \, (Q \, \cap \, W)$. Let λ be a polygonal path in (S \cap N) $\sim Q$ from v to w . Then $\lambda \cup [x,v]$ is a path in $S \sim Q$ from x to w . Now by our definition of W , bdry conv(Q \cap W) separates N into two disjoint connected sets. Let $v = t_1, \dots, t_n = w$ denote the consecutive vertices of λ , and assume that they are labeled so that $t_{i}^{}$ is the first point of λ in $conv(Q\,\cap\,W)$. Clearly j>1 . Then $[x,t_1] \ \cup \ [t_1,t_2] \subseteq S \ \sim Q$. Furthermore, by our choice of N , we assert that there can be no lnc point r in int $conv{x,t_1,t_2}$: Otherwise, clearly r would lie in N \cap bdry conv(Q \cap W) , so [R(x,r) \sim [x,r)] \cap N \subseteq conv(Q \cap W) . Since R(x,r) \sim [x,r) intersects (t1,t2) , then (t1,t2) \cap $\operatorname{conv}(Q \cap W) \neq \phi$, contradicting our choice of t_i . Then by a generalization of Valentine's lemma [4, Corollary 1], $[x,t_2] \subseteq S$. For j > 2, the above argument may be used to show that $[\mathbf{x},\mathbf{t}_2]\subseteq \mathbf{S}\sim \mathbf{Q}$. An easy induction gives $[x,t_{j-1}] \subseteq S \sim Q$ and $[x,t_j] \subseteq S$. Thus $t_j \in T$. However, this is impossible since $t_i \notin Q$ and we know that $T \subseteq Q$. We conclude that Case 1b cannot occur, dim conv(T \cup $\{x\})$ = d , and the previous argument in Case 1a guarantees our result.

CASE 2. Assume that N' may be selected so that for M' any convex neighborhood of q and M' \subseteq N', dim conv(Q \cap M') = d - 1. Let M be such a neighborhood of q, and let H = aff(Q \cap M). By Definition 2, we have q \in rel int(S \cap H), so without loss of generality we may assume that M \cap H \subseteq S. Also assume that M \cap S is starshaped relative to q.

Select k visually independent points x_1, \ldots, x_k in $S \cap M$. Since S is locally a full d-dimensional, clearly these points may be selected in $(S \cap M) \sim H$. For each i, consider the set T_i in $M \cap H$ seen by $x_i \cdot By$ arguments used in the proof of Lemma 2, it is easy to show that $conv(\{x_i\} \cup T_i) \subseteq S$. Also, using the definition of essential, one may show that T_i is a (d - 1)-dimensional set.

For simplicity of notation, assume that q is the origin in R^d and that H

is orthogonal to the vector $e_1 = (1, 0, \dots, 0)$. Let H_1, H_2 denote distinct open halfspaces determined by H , labeled so that e_1 is in H_1 . Finally, define S_1 to be the closure of the set

$$conv({x_i} \cup T_i) \cup ((M \cap H) \times [q,z])$$

where $z = -e_1$ if $x_i \in H_1$ and $z = e_1$ if $x_i \in H_2$.

For each i, it is easy to show that the set Q_i of lnc points of S_i lies in Q. Furthermore, every point of $Q \cap M$ is an lnc point for some S_i set. Now S_i is 3-convex, $q \in (int \text{ conv } S_i) \cap Q_i$, and it is easy to see that int ker $S_i \neq \phi$ for each i. Hence by Valentine's theorem there is a neighborhood U_i of q so that $U_i \cap Q_i$ is a (d - 2)-dimensional manifold. Thus for an appropriate neighborhood U of q, $U \cap Q$ is a union of k (d - 2)-manifolds, each containing q.

CASE 3. In case $conv(Q \cap M)$ has dimension $\leq d - 2$ for some neighborhood M of q, we assert that $conv(Q \cap M) = Q \cap M$ and hence $Q \cap M$ is a convex set of dimension d - 2 by a result in [1].

Without loss of generality, assume that M is a convex neighborhood of q satisfying Definition 1. Let S' denote the closure of the set S \cap M, Q' = cl(Q \cap M) the corresponding set of lnc points of S'. Since M satisfies Definition 1, S' ~ Q' is connected. By a previous lemma, Q' \subseteq cl(S' ~ Q'), so S' ~ Q' \subseteq S' \subseteq cl(S' ~ Q'), and S' is connected. We have S' closed, connected, and S' ~ Q' connected, so S' = cl(int S') by [1, Lemma 1]. Also, by the argument in [1, Lemma 4], the set S' ~ aff Q' is connected.

Now let r be a point in $\operatorname{conv}(Q \cap M)$ to show that $r \in Q$. Let A denote the subset of S' ~ aff Q' which r sees via S. By repeating arguments in [1, Lemma 5], it is easy to show that A is open and closed in S' ~ aff Q' and that $A \neq \phi$. Hence $A = S' \sim aff Q'$, and r sees S' ~ aff Q' via S.

Finally, select x,y in S' ~ aff Q' with $[x,y] \notin S$ and y \notin aff(Q' $\cup \{x\}$) (Clearly this is possible since S' = cl(int S').) By Valentine's lemma [4], there must be some lnc point in conv $\{x,y,r\}$ ~ [x,y], but by our choice of x and y, there can be no lnc point p in conv $\{x,y,r\}$ ~ $([x,y] \cup \{r\})$: Otherwise, y $\in aff\{p,x,r\} \subseteq aff(Q' \cup \{x\})$, impossible. Hence r must belong to Q and $conv(Q \cap M) \subseteq Q \cap M$. The reverse inclusion is obvious, $conv(Q \cap M) = Q \cap M$, and the assertion is proved.

The set S' is a closed connected set whose corresponding set of lnc points is convex and satisfies Definition 1 in [1]. Hence by the corollary to Theorem 2 in [1], Q' has dimension d - 2. This completes Case 3 and finishes the proof of the theorem.

COROLLARY 1. Let S be a compact m-convex set in \mathbb{R}^d , S locally a full d-dimenisonal, with Q the corresponding set of lnc points of S. Assume that for every point q in Q, there is some k > 0 such that q is an essential lnc point of order k. Then Q is a finite union of (d - 2)-dimensional manifolds.

PROOF. Since Q is compact, the result is an immediate consequence of Theorem 1.

The following examples reveal that Theorem 1 fails in case q does not satisfy both Definition 1 and Definition 2, part 3.

EXAMPLE 1. It is easy to find examples which show that q must be essential in Theorem 1. For $d \ge 3$, simply consider two d-dimensional convex sets which meet in a single point q.

EXAMPLE 2. To see that Definition 2, part 3 is required when dim conv(Q \cap N) = d , let d = 2 and identify R² with the complex plane. Let S₁ be the infinite sided polygon having consecutive vertices exp 0 , exp $\frac{\pi i}{2}$, ..., exp $\frac{(2^n - 1)\pi i}{2^n}$, $n \ge 0$. Similarly, let S₂ be the infinite sided polygon with vertices exp 0 , exp $\frac{\pi i}{4}$, exp $\frac{5\pi i}{8}$, ..., exp $\frac{(2^{n+1} - 3)\pi i}{2^{n+1}}$, $n \ge 1$. (See Figure 1.) The set S = cl(conv S₁ U conv S₂) is 3-convex, and its lnc points are essential. However, for every neighborhood N of q = exp πi and every component C of (S \cap N) \sim conv(Q \cap N) , q f int conv(C U (Q \cap N)) . Clearly Q \cap N is not expressible as a finite union of (d - 2)-manifolds. The example may be generalized to higher dimensions.

M. BREEN

EXAMPLE 3. To see that Definition 2, part 3 must be satisfied when dim conv(Q \cap N) = d - 1, let d = 3 and identify the x - y plane H with the complex plane. In this plane let P be the infinite sided polygon having vertices $v_n = \exp{\frac{(2^n - 1)\pi i}{2^n}}$, $n \ge 0$. At each vertex v_n , $n \ge 1$, strictly separate v_n from the remaining vertices with a line L_n so that L_n cuts each edge of P adjacent to v_n and so that no two L_n lines intersect in conv P. (See Figure 2.) Each line L_n determines a closed triangular subset T_n of conv P.

Let R be the rectangle in the x - y plane whose vertices are (1,0), (-1,0), (-1,-1), (1,-1), and define $A_0 = \operatorname{conv} P \sim \bigcup \{T_n : n \ge 1\}$, $A_1 = \bigcup \{T_n : n \equiv 0 \mod 3 \text{ or } n \equiv 1 \mod 3\} \cup A_0 \cup R$, $A_2 = \bigcup \{T_n : n \equiv 0 \mod 3 \text{ or } n \equiv 2 \mod 3\} \cup A_0$. Finally, let $S_1 = \operatorname{cl} A_1 \times [\theta, e_3]$ and $S_2 = \operatorname{cl} A_2 \times [\theta, -e_3]$, where $e_3 = (0,0,1)$

and $\theta = (0,0,0)$. Clearly both S_1 and S_2 are convex and closed. Label the halfspaces determined by H so that $S_1 \subseteq \text{cl H}_1$ and $S_2 \subseteq \text{cl H}_2$.

Let B denote a 3-dimensional parallelepiped in cl H₂, with B \cap H = B \cap (S₁ U S₂) = R. The set B may be constructed so that the point q = (-1,0,0) is interior to conv(S₁ U S₂ U B). Hence letting S denote the 4-convex set S₁ U S₂ U B, it is not hard to show that q \in int conv(S \cap N) for every neighborhood N of q.

Note that the set Q of lnc points of S is exactly

U {L_i \cap T_i : i ≠ 0 mod 3} U [q,r], where $r \models (1,0,0)$. For every ne. onborhood N of q, dim conv(Q \cap N) = d - 1, yet S does not tisfy part 3 of Definition 2 and Q \cap N is not a finite union of (d - 2)-manifolds. Furthermore, it is interesting to notice that for every neighborhood N of \uparrow and for every component C of (S \cap N) \sim conv(Q \cap N), C is exact1 (S \cap N) \uparrow conv(Q \cap N), and q \in int conv(C U (Q \cap N)) = int conv(S \cap N). Thus the requirement that q belong to int conv(C U (Q \cap N)) if \neg of sufficient to guarantee our result in case dim conv(Q \cap N) = d - 1

Figure 2.

The author would like to thank the referee for providing three additional examples given below. The first of these (Example 4) reveals that the conclusion of Theorem 1 may hold without Definition 2, part 1.

EXAMPLE 4. Let S be the closed set in Figure 3. (S is a cube from which a smaller cube has been removed.) The lnc point q of S satisfies Definition 1 and parts 2 and 3 of Definitions 2 for k = 3. Definition 2, part 1 does not hold. However, Q is expressible as a union of three d - 2 = 1 dimensional manifolds.

Whether Theorem 1 is true without Definition 2, part 1 remains an open question.

Figure 3.

Furthermore, the conclusion of Theorem 1 can hold when q is not essential, as Example 5 reveals. (Compare to Example 1 in which q is not essential and Theorem 1 fails.)

EXAMPLE 5. For $d \ge 2$, let S be a union of two d-polytopes which intersect in a common (d - 2)-dimensional face Q. Then the lnc points of S are not essential, yet Q is a (d - 2)-dimensional manifold.

It would be interesting to obtain an extension of Theorem 1 to include the situations of Examples 4 and 5.

The final example by the referee illustrates Theorem 1.

EXAMPLE 6. Let S be the union of four stacked cubes of equal size in Figure 4. The point q is an essential lnc point of order 3, and Q is expressible as a union of three 1-dimensional manifolds, each containing q.

524

Figure 4.

3. Q IS NOWHERE DENSE IN BDRY S .

The final theorem will require the following easy lemma.

LEMMA 3. Let S be a closed m-convex set in \mathbb{R}^d , Q the corresponding set of lnc points of S. Let N be a convex neighborhood. If S \cap N is exactly k-convex, then there exist points x_1, \ldots, x_{k-1} in (S \cap N) \sim Q which are visually independent via S \cap N.

PROOF. Select y_1, \ldots, y_{k-1} visually independent via $S \cap N$, and let $N_1, \ldots, N_{k-1} \subseteq N$ be corresponding neighborhoods of y_1, \ldots, y_{k-1} respectively, such that no point of N_i sees any point of N_j via S, $1 \leq i < j \leq k - 1$. By Lemma 1, each N_i contains some point x_i in $S \sim Q$, and the points x_1, \ldots, x_{k-1} are the required visually independent points.

THEOREM 2. Let S be a closed m-convex set in \mathbb{R}^d , S locally a full d-dimensional, with Q the set of lnc points of S. For q in Q and N any convex neighborhood of q, N \cap bdry S $\not\in$ Q. That is, Q is nowhere dense in bdry S.

PROOF. Assume on the contrary that $N \cap bdry S \subseteq Q$ for some convex neighborhood N of q. We assert that for some point r in $Q \cap N$ and some neighborhood U of r, $conv(Q \cap U) \subseteq S$: Suppose on the contrary that no such r exists. Select two points x,y in $S \cap N$ whose corresponding segment [x,y]

is not in S. The segment [x,y] intersects bdry S, and since S is closed, clearly we may select points x',y' in bdry S \cap [x,y] with [x',y'] \notin S. For convenience of notation, assume x = x' and y = y'. Since [x,y] \notin S, there exist disjoint convex neighborhoods N₁ and N₂ for x and y respectively, N₁ \cup N₂ \subseteq N, so that no point of N₁ sees any point of N₂ via S. Since x,y \in N \cap bdry S \subseteq Q \cap N, conv(Q \cap N₁) \notin S and conv(Q \cap N₂) \notin S.

Now repeat the argument for each of N_1 and N_2 . By an obvious induction, we obtain a collection of m visually independent points of S, contradicting the fact that S is m-convex. Hence our supposition is false and for some point r in $Q \cap N$ and for some neighborhood U of r, $conv(Q \cap U) \subseteq S$, the desired result.

Therefore, without loss of generality we may assume that $\operatorname{conv}(Q \cap N) \subseteq S$. Also assume that $S \cap N$ is exactly j-convex, $3 \leq j \leq m$. By Lemma 3, there exist points x_1, \ldots, x_{j-1} in $(S \cap N) \sim Q$ which are visually independent via S, and clearly at most one x point, say x_1 is in $\operatorname{conv}(Q \cap N)$. Now if every point of $\operatorname{conv}(Q \cap N) \cap$ bdry S sees one of x_2, \ldots, x_{j-1} via S, delete x_1 from our listing. Otherwise, some $z \in \operatorname{conv}(Q \cap N) \cap$ bdry S does not see any x_i via S, $2 \leq i \leq j - 1$, and for some neighborhood M of z, $M \subseteq N$, no point of $S \cap M$ sees any x_i via S, $2 \leq i \leq j - 1$. Select $x_0 \in (S \cap M) \sim \operatorname{conv}(Q \cap N)$. (Clearly such an x_0 exists since $z \in Q$.) Replacing x_1 by x_0 , we have $x_0, x_2, \ldots, x_{j-1}$, a collection of j visually independent points, and since $S \cap N$ is exactly j-convex, every point of $\operatorname{conv}(Q \cap N) \cap$ bdry S sees one of these points via S. Hence in either case we have a collection of points y_1, \ldots, y_k in $(S \cap N) \sim \operatorname{conv}(Q \cap N)$ such that every point of $\operatorname{conv}(Q \cap N) \cap$ bdry S sees one of these points via S, $j - 2 \leq k \leq j - 1$.

For the moment, suppose that for every neighborhood $U \subseteq N$ with $U \cap Q \neq \phi$, dim conv $(Q \cap U) = d$. Let Q_i denote the subset of $Q \cap N$ seen by y_i , $1 \leq i \leq k$. By Lemma 2, conv $(\{y_i\} \cup Q_i) \subseteq S$ for each i. Since $y_i \notin conv(Q \cap N)$, certainly dim conv $(\{y_i\} \cup Q_i) \leq d - 1$, for otherwise conv $(\{y_i\} \cup Q_i)$ would capture some point of Q in its interior, impossible. Thus $Q \cap N$ lies in a finite union of flats, each having dimension $\leq d - 1$. Moreover, since for every neighborhood $U \subseteq N$ with $U \cap Q \neq \phi$, $U \cap Q$ does not lie in a hyperplane, it follows that $U \cap$ bdry $S \notin Q_i$. That is, Q_i is necessarily nowhere dense as a subset of bdry S. Then $Q \cap N = U Q_i$ is a finite union of sets, each nowhere dense in bdry S, and by standard arguments $Q \cap N$ is nowhere dense in bdry S. We have a contradiction, our supposition is false, and dim conv $(Q \cap U) \leq d - 1$ for some neighborhood $U \subseteq N$ with $U \cap Q \neq \phi$. Since S is a full d-dimensional, dim conv $(Q \cap U) = d - 1$ for such a neighborhood U. For convenience of notation, assume that dim conv $(Q \cap N) = d - 1$.

We assert that since $N \cap bdry S \subseteq Q$ and $\dim conv(Q \cap N) = d - 1$, then $Q \cap N$ is convex: For x,y in $Q \cap N$ and x < z < y, we will show that $z \in bdry S$. Otherwise, there would be a neighborhood V of z interior to S, with $V \subseteq N$. Since $x \in bdry S$, there is a sequence $\{x_n\}$ in $\mathbb{R}^d \sim S$ converging to x, and for each x_n and each p in V, $(x_n,p) \cap bdry S \neq \phi$. A parallel statement holds for y. This implies that dim conv($N \cap bdry S$) = d and dim conv($Q \cap N$) = d, impossible. We have a contradiction, and z must belong to bdry S. Hence $z \in (bdry S) \cap N \subseteq Q \cap N$, and $Q \cap N$ is indeed convex.

Again let Q_i denote the subset of $Q \cap N$ seen by y_i , $1 \le i \le k$. Since $\operatorname{conv}(\{y_i\} \cup Q_i) \subseteq S$ for every i, Q_i is necessarily a convex subset of $Q \cap N$, and since $\dim(Q \cap N) = d - 1$, some Q_i set, say Q_1 , has dimension d - 1. Then the set $\operatorname{conv}(\{y_1\} \cup Q_1)$ is a full d-dimensional. Our previous argument may be repeated to obtain a finite set of visually independent points z_1, \ldots, z_n in $(S \cap \operatorname{cone}(y_1, Q_1)) \sim \operatorname{conv}(\{y_1\} \cup Q_1)$, each z_i seeing a subset T_i of Q_1 having dimension at most d - 2, with $Q_1 = \cup\{T_i : 1 \le i \le n\}$. Clearly this is impossible, our assumption is false, and $N \cap$ bdry $S \notin Q$ for every neighborhood N of q. This completes the proof of Theorem 2.

Techniques identical to those employed in the proof of Theorem 2 may be used to obtain the following result.

COROLLARY 1. Let S be a closed m-convex set in R^d with Q the set of lnc points of S. Then if $conv(Q \cap N) \subseteq S$ for some neighborhood N , $Q \cap N$

cannot be homeomorphic to a (d - 1)-dimensional manifold.

REFERENCES

- BREEN, Marilyn. Points of Local Nonconvexity and Finite Unions of Convex Sets, Canad. J. Math. <u>27</u> (1975), pp. 376-383.
- KAY, David C. & GUAY, Merle D. Convexity and a Certain Property Pm, Israel J. Math. 8 (1970), pp. 39-52.
- VALENTINE, F. A. The Intersection of Two Convex Surfaces and Property P₃, <u>Proc. Amer. Math. Soc. 9</u> (1958), pp. 47-54.
- VALENTINE, F. A. Local Convexity and L Sets, Proc. Amer. Math. Soc. 16 (1965), pp. 1305-1310.