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I. INTRODUCTION ANN DEFINITIONS.

DEFINITION i.i. An entire function f: / is said to be of bounded index

(b.i.) if there exists an integer N >- 0 such that

max
If(J) (z)I >_ if(n)(z)l

(i.i)
O_<j_<N J! n!

for all z and all n 0,1,2, The least such integer N is called the in-

dex of f (see Lepson [30], Shah [40]).
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DEFINITION 1.2. An entire function f is said to be of bounded value distribu-

tion (b.v.d.) if for every r > 0, there exists a fixed integer P(r) > 0 such that

the eouation f(z) w has never more that P(r) roots in any disc of radius r and

for any w e (see Bayman [16,17]).

A survey of the properties of functions of b.i., and of b.v.d., and a list of

references published up to 1975 and some up to lO76, are given in [40].

In Section 2 we ive some extensions of these concepts to meromorphic functions

[3]. If an entire function is of b.i. N, then its growth is (I; N + I) ([17],

[37], [13]). In Section 3 we study extensions of (I.i) suitable for entire func-

tions of finite order. Here we show, following Bennekemper [19], that if E[O,)

be the set of all entire functions of order not exceeding 0, and not of maximal

tyDe order 0, and if f be of b.i. N, then (f,fl f(N))
I E[I,), where the left

side denotes the ideal in E[1,,) finitely generated by f,fl,...,f(N). In Section

4 we consider entire solutions of linear differential equations with Dolvnomial

coefficients and give theorems relating to the poperty of b.i., and bounds on the

index Nf of an entire solution f of bounded index, and also a bound on the rowth

rate of . Here and in the precedin section we have included some new results

and shorter proofs of some known results. (Theorems and Examples without accom-

panying references are new.) The summability methods related to bounded index

property are iven in Section 5. inally in Section 6 we give some recent results,

on functions defined by Dirichlet series and on functions of several variables.

2. vUNCTIONS OF B.I. AND B.V.D.

It is known that if f is of b.i., then it is of exponential type ([17], [13])

but Functions of exponential type need not be of b.i. In fact there exist func-

tions of exponential type and having simple zeros and of unbounded index [39].

The followin theorem gives a necessary and sufficient condition for an entire

function of exponential type to be o. b.i.

THEOREM 2.1. (ricke [i0]). Let f be an entire function o exponential type.

Then f is of b.i. if and only if for each d > 0, there exists M M(d) > 0 such

that If’(z) < Mlf(z) for all z with z a > d for all n. Here a’s denote
n n
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the zeros of f.

The bound M 4epends on the closeness to the zeros of f. If we now examine the

behavior of the loarithmlc derivative near a zero a
t

of order m, we see that

f’(z)
(z) z a

t

is bounded in a neighborhood of at; that is

f’ (z)
f(z)

< m+l

Iz
for z sufficiently close to a

t
This simple observation is used to improve

Theorem 2.1. For an entire function f, let

R(z) Rf(z) max {i} U { [z a
n 1,2 }]

n

where the a’s are the zeros of f.
n

THEOREM 2.2. (Fricke [i0]). An entire function of finite order is of b.i. it

and only if there exists a constant M > 0 such that

If’(z) <_ MR(z) If(z) for all z

The proof of Theorem 2.2 makes use of the followinK lemma [i0]: If f is an entire

function of finite order such that for some M > 0,

If’(z) < M/(z) If(z)l for all z

then there exists an integer N such that any closed disk of radius I contains at

most N zeros of f.

Beauchamp [3] extended tha basic ideas in Theorem 2.2 to meromorphic functions.

To present his results we need the followin notations.

DEFINITION 2.3, Let A c u {=}. A function f meromorphic on is said to be

A-b.v.d. if there exists an integer P such that for any w e A, f(z) w has at most

P zeros in any disk of radius i. If w e A this implies that f has at most P

poles in any disk of radius i. If A u {=}, we simply say that f is b.v.d.

DEFINITION 2.4. A function f meromorphic on C is said to be D.I. (differen-

tial ineauality) if

6i) f is {=}-b.v.d.
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(ii) f satisfies an inequality of the form

[f(N+l) (z)[ < R(z) max f(J)
0<j<N

for all z e \P, where N is a positive integer,

P {b C f has a pole at b
n n

and R(z) is a real valued function with R(z) > and R(z) decreasing

with respect to the distance of z to the poles, that is,

R(z) D[d(z,P)] where D (0,] / [I,=) is a decreasing

function. (If f is entire we may consider R(z) to be constant.)

For entire functions and for R(z) C, Hayman [17] showed that the above con-

dition is equivalent to bounded index.

DEFINITION 2.5. A function f meromorphic on is said to be L.D.I. (logarith-

mic differential inequality) if

(i) f is {0,=}-b.v.d.

(ii) the logarithmic derivative satisfies

f’ (Z)
f(z)

< L(z) for all z

where D is the set of zeros and poles of f and L(z) is a decreasing

function with respect to the distance of z to and L(z) > i.

Using the above definitions, Beauchamp was able to obtain among other results

the following:

THEOREM 2.6. (Beauchamp [3]). A function f meromorphic on is D.I. if and

only if it is L.D.I.; in fact if f is D.I. then R(z) in Definition 2.4 may be

chosen to be of the form R(z) M ax {I, d(,P) where M is a constant > i,

and N and K are integers with 1 < K < N.

THEOREM 2.7. (Beauchamp [3]). A function f meromorphic on is b.v.d, if

and only if f’(z) is D.I.

THEOREM 2.8. (Beauchamp [3]). Let f and g be D.I. Then

i
(i) the function is D.I.

(ii) The product h fg is D.I.
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THEOREM 2.9. (Beauchamp [3]). Lt f be D.I. Then f is of order not exceed-

ing 2 and finite type.

In [3] Beauchamp also examines and obtains similar results for functions mero-

morphic on the unit disk. Here R(z) and L(z) depend not only on the distance to

the zeros, respectively zeros and poles, but also on the distance to the boundary

of the unit disk.

3. BOUNDED INDEX CONCEPT FOR FUNCTIONS OF FINITE ORDER.

It is known that if f, entire on , is of order > i or of order i and maximal

type then the growth rate of the derivative may be larger than that of the function

(Shah [36], Vijayaraghavan [46], KSvari [28]) and so inequalities of the type (i.i)

may not hold. To overcome this difficulty both sides of the inequality (I.I) are

multiplied by a factor. Thus we have:

DEFINITION 3.1. (Beauchamp [3]). Let f be entire on and y >- 0. The

function f is y-b.i. (y-bounded index) if there exist a number r > 0 and an inte-
o

ger N >- 0 such that

If (n) (z) < max
n z ]ny O<)-<N

for all z[ -> r and n >- N.
o

(3.1)

This definition is an extension of (I.I) to entire functions of finite order.

If f is of b.i. N then f is of growth (i, N+I) ([40]). Here we have

THEOREM 3.2. (Beauchamp [3]). If f is y-b.i, satisfying (3.1) then f is of

N+I
growth (y + i, ).

Another extension of (i.i) is as follows:

DEFINITION 3.3. (Hennekemper [19]). An entire function f is said to be of

bounded m-index N if R and N is the smallest integer such that for all n,

and

If (j) (z) If (n)
(i) max

j,
>- n!

0_<j_<N

(ii) max
0_<j_<N

for all z zl < i,

If (j) (z) j If (n) (z) an
} Iz] > Izl for all z Iz[ >_ i.

j n!
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This definition is a slight variation of the one given by G. Frank [6], and is

used by Hennekemper to prove Theorem 3.4 below.

Let E[0,) be the set of all entire functions which are of order not exceeding

0 (0 < 0 < ) and not of maximal type order 0, that is,

E[0,) {f entire llf(z) < CI exp(C21zl 0) for all z and

constants CI Cl(f) and C
2

C2(f)}.

the ideal in E[0,)Let fl,f2 fn E[0 ) and denote by (fl f2 "’’’fn)0
finitely generated by fl’f2"’’’ fn"

THEOREM 3.4. (Hennekemper [19]). Let f E[0,) be of bounded m-index N and

let > 0. Then

(f,f,, f(N))0+e E[0+e’)"

We give below a different proof of this theorem when p i and 0. For another

proof see [19].

THEOREM 3.5. Let f be an entire function of b.i. N, not identically zero.

Then

(f,f, f,N,( E[I =)
"i

PROOF. Since f is of b.i. N, we have for any j

If (j) (z) <-j max {If (k)
(z) I}

O<k_<N

Thus, for C (N + i)
N

If (j) (z) < C l If (k) (z)
k=0

for all z .
for all z, and j 1,2 N+I. Let m II I and

N
G(r) l if(k) (mr)[

k=O

.len G(r) is continuous and piecewise continuously differentiable. Also because of

the definition of b.i.,

max If () (z)[ > 0
O<<N

and thus G(r) > 0 for r > 0

Hence for all r, except possibly for a set of measure zero,
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IG’ (r)
N

d lf(k) (r)
k=0 dr

N
-< l ]f(k+l) (r)
k=O

< G(r) + If (N+I) (er)

< G(r) + CG(r)

Thus

IG’(r)]/G(r) _< C + 1 G’(r)IG(r) >-(C + i)

Hence

G(r)
log G(0)

G’ (x)
"(x) dx > -(C +l)r

Now if we let CI I/G(0) and C
2

C + i, then for all r >_ 0

G(.r) C G(r) > exp(-C2r)G(O) i

and thus for all r >_ 0

C
I exp(C2r)G(r) > i

Since arg was arbitrary, we obtain by considering z

N
i < C

I exp(C21zl) j__Z0 If (j)

for all z. The proof can now be concluded by applying the following ([21], [23],

[19])

LEMMA Let f ’fl "’’fn e E[p =). The (fo flo ’fn)p
if there exist CI,C2 > 0 such that

n
i -< C

I exp(C2]z]0) { Z Ifj(z)j=O

for all z e .
E[O,=) if and only

4. ENTIRE SOLUTIONS OF DIFFERENTIAL EQUATIONS.

(i) Consider the differential equation (d.e.)

L w,a# a w
n o

3.n. + alw(n-l) + + a w 0 a 0
n o

(4.1)

and the d.e.

L (w P) P (z)w "n’( + Pl(Z)w(n-l) + + P (z)w 0
n o n

(4.2)

where a
k

e , Pk are all polynomials and
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Pk(Z) zk(l + o(i)) Izl / (4.3)

The following results are known.

THEOREM 4.1. (Shah [37]). All solutions of the equation L (w a) 0 a
k

e
n

are entire functions of b.i. and b.v.d.

There it is shown that every solution f(z) is of b.i., and a bound on the

index of f is also given. By differentiating (4.1), one sees easily that every

solution is of b.v.d.

THEOREM 4.2. (Shah [38]). If

deg P > max deg P (4 4)
o l<k_<n

k

then all those solutions of the equation L (w,P) 0, which are entire functions,
n

are of b.i. and b.v.d.

Extensions of this theorem are given by Fricke and Shah ([ii], [13]). Bounds

for the index Nf N(f) of an entire solution f of (4.2) are known in some particu-

lar cases ([31], [22], [44]). Note that Theorem 4.2 implies that any entire solu-

tion w is of exponential type N(fw) + i. A bounded index on the growth rate of a

solution, without the hypothesis (4.4), is given in the next theorem. Write

ek
max

l_<k<n k
ak if Pk 0

k
if k k

0 if ek < ko

THEOREM 4.3. (Beauchamp [3]). If f is an entire solution of the equation

L (w,P) O, and if y > 0, then f has growth
n

n
{y + i, Z lkl / (7 + i) IA }. (4.5)

k=l o

The following examples show that the growth bound (4.5) cannot, in general,

be improved.

EXAMPLE 4.4. (Beauchamp [3]). Let f(z) exp(zk) where k >_ i is an integer.

Then f satisfies the equation

w’ kz(k-l)w 0
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Here y k- I, A i, -k and f has growth (k,l).

EXAMPLE 4.5. The Bessel function J (z) of order n, where n is a positive orn

negative integer or zero, satisfies the equation

2w, 2
z + zw + (z

2
n )w 0

Here y 0 A 1 i 0 2 1 and J has growth (i I).
o n

(ii) We now consider one type of converse of Theorem 4.2. We seek a set of

entire functions gk such that every entire function f of b.i. satisfies a linear

d.e. of the form

f(n) + gn-i f(n-l) + + gof 0

where go,gl,...,gn_I are entire functions.

THEOREM 4.6. (Hennekemper [19],[20]). Let f be of b.i.N. Then f satisfies

a linear differential equation of the form

(N) + + gof 0 (4 6)f(N+l) + gNf
with gk E E[I,).

COROLLARY 4.7. (Hennekemper [20]). Any entire function of exponential type

can be written as the difference of two functions each satisfying a linear d.e. of

order N with coefficients from E[I,).

For the proof of Theorem 4.6 we only need to note that (Theorem 3.5)

f(N+l) e E[I,=) (f,fl f(N))
I

The Corollary relies on the fact that any function of exponential type can be

written as the sum of two functions of b.i. ([42]).

ZREMARK. Simple examples such as Sin z, Cos z (N i), e (N O) show that

the order of the equation (4.6) is best possible.

(iii) Another type of converse to Theorem 4.2 is as follows:

THEOREM 4.8. If all n solutions of d.e. L (w,P) 0 are entire functions of
n

exponential type tendeg P > deg Pk’ for k 1,2 ...,n; and thus the solutions
O

are of b.i. and b.v.d.

We shall deduce this from

THEOREM 4.9. If all n solutions are entire functions and

deg Po < max deg Pk (4.7)
k>O
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then at least one solution w is of order % where
i

k- So
max > i (4.8)
k>0 k

PROOF. This result follows easily from the results and methods of Knab [24-27],

Wittich [47], Poschl [34], Boehmer [4] and Frank [5]. We sketch briefly the main

argument. By our hypothesis
n

o < g max {a
i
+ i}

i=l
(4.9)

Hence there is a region S, the plane cut along a half ray, in which a single-valued

branch W of the solution w can be defined with the property that if

M(r,W) max {IW(z) l, z ( S

then

%(W) lira sup 10glg M(r,W) > 0
r-o log r

Since all the solutions, by our hypothesis, are entire, we can choose the branch

to be the solution itself and this implies that there is at least one transcendental

solution with positive order (see also Ince [22, 424-427]).

Now we use Wiman-Valiron central index method (cf: Wittich [47, 4-11; 65-73],

Valiron [45, 105-109; 177-181]). For the transcendental solutions

w(k) () ()kw() ,k 1,2 as +

except for a set of values of r II of finite logarithmic measure. Here N N(r)

is the central index and the points , on zl r, are the points at which the

maximum modulus is attained:

() lw(z)

We substitute this asymptotic relation in (4.2) and put N l/Y, I/X and then

the equation (4.2) becomes
n AkxkykZ (i + nk(X)) 0

k=0

where m
k

K + n + ao ek k, K maxk>0 _(a
k ao and nk + 0 as X + 0. One

next constructs a Newton’s polygon (cf: [33], [47; 67-72]) with points (k,mk) and

it follows (cf: Knob [25,27]) that the negative slopes of the sides of the polygon
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give the orders of the solutions and that the negative of the slope of the side

through (0,mo) is the order of the solution of maximal growth. The negative of
a
k

-s
o

this slope is in fact i + maxk>0 k
> i

REMARKS. (i) Note that the condition (4.7) implies (4.9). We require (4.7)

for the concluding part of the proof of Theorem (4.9).

(ii) The following example shows that the hypothesis, in Theorem 4.9, that all

solutions are entire is necessary.

EXAMPLE 4.10. [40].

2 1zw" + (z2 z 1/2)w’ (z )w 0

Here (4.7) is satisfied. One solution Wl(Z) ez is entire but the second solution

is not entire, and the conclusion of Theorem (4.9) does not hold.

We now give two more examples.

EXAMPLE 4.11. [5, p. 61-62]).

(2z
2

2z l)w"’ + (-8z
3 + 6z

2 + 2z + 3)w" + (8z
4

10z
2 + 2z + 7)w’

2+ (-8z
4 + 8z

3 + 2z 2z 9)w 0

Here all three solutions are entire functions:

2
z -z z2+z z

wI e w
2

e w
3

e

Here

a 2 i 3 a2 4 a3 4 m 5 ml 3 m2 i m3 0
o o

ak So Imax 2
k>0 k

EXAMPLE 4.12.

w" 2zw’ + 2nw 0

Here both solutions are entire functions, one a polynomial (Hermite polynomial,

when normalized) and the second, a transcendental function of order

max {i,0} 2

Here m 3, mI i, m
2

i.
o

(iii) Frank and Frank and Mues ([6-8]; see also [40]) introduce a function l(r,f)

to define a function of b.i. Consider the Taylor expansion of an entire function
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f about a point a:

f(z) 7.
f(n) (a) (z a)

n

n=O n! a

and let k be the largest nonnegative integer such that
a

(ka) If (n)If (a) > for n 0 1 2

(ka) n!

kDefine l(r,f) sUP’a’-<rl a

If lim SUPr_ l(r,f) < then f is said to be of b.i. This definition is equiva-

lent to (i.i). Frank and Mues [8] showed that if f is an entire function of finite

order p, then
+

max(O -I) < llm sup
log l(r,f) <

]o= r
r-o

We now state an extension of this theorem.

THEOREM 4.13. (a) Suppose the hypothesis of Theorem 4.9 is satisfied. Then

there is a solution w of order %1 given by (4.8). The index l(r,w) of this solution

w satisfies

lim
log

+
l(.r,w)

log r
X
1

1

(b) If deg Po -> maxk>0 deg Pk’ then

k o
max

k <_i
k>0

and any entire solution of (4.2) satisfies

lim l(r,w) <

r-

We omit the proof of (a) which is similar to the proof of Theorem 2 of [7]. The

second part (b) is a restat’ement of Theorem 4.8.

(iv) Heath considers vector-valued entire functions of b.i. and proves a result,

similar to Theorem 4.2, for vector equations.

THEOREM 4.14. (Heath [18]). If F is an entire solution of F’ AF + Q where

A [rij is a matrix whose entries are rational functions which are bounded at

infinity and Q is a vector whose entries are rational functions which are bounded

at infinity, then F is a function of bounded index.
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5. BOUNDED INDEX AND SUMMABILITY [ETHODS.

We begin with definitions and notations. A sequence X {}o of complex Hum-

k
bers is an entire sequence if lk=0 Ilq converges for every positive integer q,

that is if f(z) Ek=0 zk
Is an entire function. We will denote the set of

entire sequences by E. An entire sequence X { o
is of bounded index if f(z)

zk
is of b.i., and we denote the set of sequences of b.i. by B.k=0

Furthermore, let c be the set of null sequences, c the set of convergent
o

sequences, be the set of absolutely convergent sequences, that is

{X { o k=0

and let

and

i

is bounded

i

/0 as k +=}

Then X can be regarded as the collection of functions f(z) Ek=0 zk
of

exponential type of order i and type 0.

If R and S are collections of sequences, then a matrix A (a
n k

is an R-S

method if it maps sequences of R to sequences in S.

The Taylor matrix T(r) (an,k is defined by [35, p. 60]

k) (l_r)n+l k-n
r for k -> n

n

n,k 0 otherwise

THEOREM 5.1. (Fricke and Powell [12]). The Taylor matrix is a B-B method,

that is, maps sequences of b.i. to sequences of b.i. for any complex number r.

For an entire function f(z) and a sequence {zi} of complex numbers, define

the matrix method A(f,z i) (an,k by

k
f(z) a k(Z zn) for n 0,1,2,

k=0 n,

We can express the Silverman-Toeplitz conditions for regularity as follows (cf:

[35, p. 23]):
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(i) lim f(k) (z) 0 for k 0,i
n

n-oo

(ii) lim f(z + I) 1
n

,and

(iii) k=O an,kl < M for some M > 0 and all n 0 1

THEOREM 5.2. (Fricke and Powell [12]). If f is of b.i.o then A(f,z.) is not
1

regular for any sequence {z.}
0

The proof relies on the fact that if f is a function of b.i. and {a is a
n

(k)
sequence of complex numbers such that lim f (a) 0 for all k 0,I

n-o n

then for any r > 0, limn_> maXlz_a [=r{If (k)
(z) I} 0 for k 0,I

n

Let A’(f,zi) (bn,k) denote the transpose of A(f,zi), that is,

nf(z) n=O7’ bn,k(Z zk) for k 0,i

We then have the following:

THEOREM 5.3. (Fricke and Powell [12]). Let f be of b.i.

(i) A’(f,z i) is an - method if and only if

sup {If (k) (Zn) I} < for k 0,i
n

(ii) A’ (f,z i) is an -E method if and only if for each integer n >- 0

there exist an integer p > 0 and a constant M > 0 such that

If(n) (Zk) -< pi for k 0,i

The part (ii) of this theorem does not necessarily hold for functions of

exponential type and unbounded index.

THEOREM 5.4. (Fricke and Powell [12]). Let f be of b.i. If either A(f,z i)
or A’(f,zi) is an - method then A’(f,zi) is an E-E method.

In a recent paper and its corregendum ([43]) Sridhar further examines the

A(f,zi) matrix transformation and obtains results which can be summarized as follows.

THEOREM 5.5. (Sridhar [43]). Let f be of b.i. Then the following are equi-

valent.

(i) A(f z i) is a c- method
0

(ii) A(f,zi) is a Co-X method.
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(iii) A(f,zi) is a c-E method.
i

(n) as n + for all k 0,i(iv) f(k) (Zn)

THEOREM 5.6. (Sridhar [43]). Let f be of b.i. Then A(f,zi) is a c-E* method

if and only if I

f(k) n O(n) as n / for all k 0,i,

6. FUNCTIONS DEFINED BY DIRICHLET SERIES AND FUNCTIONS OF SEVERAL VARIABLES.

(i) Let

f(s) r. a exp(s%n) % > 0 %n+l > %
n--O n o n

be absolutely convergent everywhere and such that lim infn_>(%n+I > O.
n

Azpeitia [i] considers entire functions f(s) and proves that if f(s) is of bounded

index N, then it reduces to an exponential polynomial. Bajpai [2] replaces the

condition of b.i. of f(s) by four conditions and proves that if any one of these

four conditions is satisfied then f(s) reduces to an exponential polynomial. Gross

[15] and Shah and Sisarcick [41] have considered similar conditions for functions

defined by Taylor series.

(ii) In [32] Salmassi considers functions f(z) f(zl, z 2) of two variables

and proves the following:

THEOREM 6.1. (Salmassi [32]). Let f(z) be of b.i. and a . Then g(z)

f(az) is also of b.i.

He also obtains a necessary and sufficient condition for f(z) to be of b.i.

A similar theorem for a function of one variable is due to Fricke [9].
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