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1. INTRODUCTION.

We study a convergence space compactification which was introduced by one of

the authors in 1970 (see [II]). The star compactification m* (X*,i*) of a

convergence space X is constructed by adjoining to X the set X’ of all non-conver-

gent ultrafilters on X and constructing a compact convergence structure on

X* X U X’ in a natural way. It is proved in [II] that a continuous function

from a T
2 space X into a compact T3 space Y has a continuous extension to X*.

The authors published a survey paper, [7], concerning the existence of largest

and smallest convergence space compactifications relative to various constraints.

In all cases studied, the largest compactification, whenever it existed, turned

out to be g:. In a :re recent paper, [9], we showed that K* can be used to

characterize e-regular and completely regular spaces. These results suggest that

further investigation of the star compactification is appropriate.

In Section 2, we examine the relationship between the decomposition series

of X and X, showing that the lengths of these series can differ by at most one.

These results yield a method for constructing compact T2 spaces with arbitrarily

long decomposition series. In Section 3, the R-series of X and X* are compared.

By means of the R-series, the notion of e-continuity and other e-mapping properties

(see [2], [3]) are extended to convergence spaces.

If f is a function from a space X to a space Y, then a "natural extension"

f X* / Y* is defined in Section 4. The natural extension is unique if Y is

T
2

and coincides with the continuous extension constructed in [II] when Y is

compact and T3. The main result of Section 4 is that any natural extension f,

is e-continuous whenever f is continuous. This result is used to obtain, among

other things, an alternate construction of BX for a Tychonoff topological space X.

Section 5 examines conditions on f, X, and Y under which f, is continuous, and

Section 6 gives conditions under which f preserves certain quotient-type mapping
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properties, such as "open", "proper", and "perfect".

2. DECOMPOSITION SERIES.

The reader is asked to refer to [7] for convergence space notation and

terminology not given here, as well as additional information about the star

compactification. As in [7], space will always mean convergence space, and the

abbreviation "u.f." is often used for "ultrafilter". The separation axioms TI

(singletons are closed), T
2

(convergent filters have unique limits), and T
3

(regular plus T2) will be used, but no separation axioms are assumed unless such

is explicitly stated.

Given a space X, let F(X) (resp. U(X)) be the set of all filters (resp.,

ultrafilters) on X. Let X’ be the set of all non-convergent members of (X), and

X* X U X’. If A c X, define A’ { 6 X’: A E,}, and A* A U A’. If

E F(X), and F’ # for all F , then let be the filter generated by

{F’: F } let * be the filter generated by {F* :F 3 }. If 3’ exists,

then 3" 3 3’; otherwise, 3" 3 We omit the easy proofs of the first

two propositions.

PROPOSITION 2.1. The following equalities hold for any subsets A, B of X:

A’ U B’ (AUB)’ A’ B’ (AB)’; A* U B* (A UB)* A* B* =(AB)*.

Let X be a space, F(X*), and X’ Define ^ to be the filter on X

generated by {A ! X A’ E }.

PROPOSITION 2.2. (a) If F(X), 6 F(X*), and >_ *, then ^ >-

(b) If 6 (X)and 3’ exists, then .’)^ 3

(c) If (X*) and X’ 6 , then 6 6 (X).

X*A convergence structure is defined on as follows:

For x X, -+ x in X* iff there is + x in X such that >- *; for

X’ + iff >_ * i*Let denote the identity embedding of X into

X*-, it is proved in [II] that <* (X*,i*) is a compactification of X which is T
2
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whenever X is T2. It is immediate from the construction that, for any non-

compact space X, X*-X is a T
2
pretopological space; thus X* is pretopological

whenever X is pretopological. The universal property of K* established in [II]

will be obtained in Section 3 as a corollary of a much more general result.

A subset A of space X is bounded if each ultrafilter containing A is

convergent. X is said to be locally bounded if each convergent filter contains a

bounded set. X is essentiall7 bounded if 3 ( X’ implies that the filters

and ( X’ : % 3 } contain disjoint sets. The next proposition is

proved in [7].

PROPOSITION 2.3. (a) X is locally bounded iff X is open in X*.

(b) X is essentially bounded iff X*- X is discrete.

We shall next consider the relationship between the closure operators of X

and X*. Let clX
be the closure operator on a space X. For an ordinal number

, we deflne:

cl A =A
x

clx
I A cl

X
A

-IA)clX A clx(Cl if u-I exists

clA U c A if is a limit ordinal.

<
The smallest ordinal u such that clA clu+IA for all A c X is called the

X X

length of the. decomposition series of X and denoted by ED(X). The relationship

between ED(X) and ED(X*) can be obtained with the help of several lemmas.

For the remainder of this section, we shall assume that X is an arbitrary

space; (X*,i*) will always’ denote the star compactification of X. Let be the

smallest infinite ordinal number.

i
n n n-I

LEMMA 2.4. If A c X, then c x,A clXA U (clX
A)’.
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PROOF. It suffices to prove this result for n--2. Note that

CI2xA U (clXA)’ c__ cl2x, A is obvious. If x {(cl2x,A) 0 X then there is

>_ Thus(X*) such that > 8" and X Q implies QIx
2 A 0 X’ then it is easy to see that clXA 3 andx CI2xA. If { clx,

so : (c].XA)’. B
We next describe cl, B for B c__ X’. For this purpose, it is necessary to

introduce some additional terminology. If B c X’ let 0 3: { B}; note
B

that B F(X). Define B { 8 X’: 8 >_ B} and B {x X 3 { (X)

such that / x in X and >_
B
}. Note that (B~) B and (B~) Bv.

LEMMA 2.5. If B _c X’, then cl,B B~ U (cl-I BY) U (cl-2 B’)’.

PROOF. For n--I, the statement becomes Clx, B B U B’. If

8{ (clx* B) 0 X’, then there is { (X*) such that / 8 in X* and B

Thus Q >- 8’, and so B O G’ # for all G 8 This implies 8 >- B’ and so

8 B If x (clx, B) X, then there is an u.f. containing B and a

filter + x such that >_ ’ By Proposition 2.2, > 3 and so

6 + x in X. Also, 6 6 (X) and >- (6^)’. Letting 8 we have

B N G’ # for all G 8. Thus 8 >- B’ and x { B.
Conversely, if x B", then there is { (X) such that / x and >_

For each F 6 , choose 8F B such that F { 8F
Let be the filter of

Then >_ * implies - x in X*, and sosections of the net (SF)F
x clx, B. A similar argument shows that B~ c__ clx, B. This establishes the

result for n I.

2
If n--2, then clx, B clx, (B U Bv) (B~) U (B~) U (clxBv) follows

with the help of Lemma 2.4. By the remarks preceding Lemma 2.5, (B~) B and

B"

(B~)" B" B c__ clx B This establishes the result for n--2. The generaliza-

tion to arbitrary n is now a trivial induction argument.

COROLLARY 2.6. If A_c X, then clx, A clx, A*
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PROOF. Clx, A* clx, A U clx, A’. By Lemma 2.5, clx, A’

It is easy to check that (A’) A’ _c clx, A, and (A’)

LEMMA 2.7 (a) If A c X and u is a non-limit ordinal, then

PROOF. Using transfinite induction along with Lemma 2.4, the results follow

easily from both limit and non-limit ordinals, except for the case u 7 +I, where

y is a limit ordinal. In this case we have

c’Y’+l (clY
X A U +I cl A) U U B""X* A clx, B) cl A U B

u
X A)’: B < ,:o  ho,, B"ewhere B

and B c__ (c17XA)’; we omit the details.

The symbol AX represents the topological modification of X, i.e., the finest

topological space on X coarser than X.

THEOREM 2.8. AX is a subspace of %X*.
PROOF. Let XI AX*Ix Then AX >_ X

1
is clear. Let A c__ X be %X-closed.

Then clx, A clxA U A’ AU A’ A* clxA* by Corollary 2.6. Thus A* is

closed in AX* and A A*0 X, which implies A is X
1
-closed.

THEOREM 2.9. (a) If i _< ED(X) < a then ED(X) _< ED(X*) _< ED(X)+ I.

(b) If ED(X) >_ then ED(X) ED(X*)"
PROOF. Let A c__ X* and A B U C, where B ANX, C AX’. Then, by

n-2 C U C If

cl is idempotent, it follows that clxk,+l must be idempotent. Thus

ED(X*) ED(X) + I. It follows easily from Lemma 2.4 that clkx is idempotent if

cl, is idempotent. Thus (a) is established.

Statement (b) follows easily from Lemma 2.6.

COROLLARY 2.10. If X is a topological space, then ED(X*) -< 2.
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We define a to be a regular space with the property that clX --for all { X’; this concept (but not the terminology) was introduced by Gazik

[4]. Discrete spaces and compact regular spaces are the most obvious examples of

G-spaces. Another class of G-spaces are the ultraspaces, which are the topological

spaces having exactly one convergent ultrafilter. The next theorem is proved in

[4] in the case where X is T2; removal of the T2 assumption causes no problems in

the proof.

THEOREM 2.11. X* is regular iff X is a G-space.

A regular space is symmetric if + x whenever - y and - x. Examples

of symmetric spaces include T
3 spaces, regular topological spaces, and regular

convergence groups. It is shown in [14] that a compact symmetric space has the

same ultrafilter convergence as a compact regular topological space.

PROPOSITION 2.12. If X is a symmetric G-space, then X* is symmetric.

PROOF. Let - and + 8 in X* By the construction of X* we can con-

clude that both e and 8 are in X. Since + , there is / e in X such that

>_ *. Since X is symmetric, / 8 in X, and so / 8 in X*.

THEOREM 2.13. (a) If X is a G-space, then D(X*) _< 2 and D(X) _< 2.

(b) If X is a symmetric G-space, then D(X*) _< i.

(c) If X is a T2 topological space, then D(X*) _< I iff X is a G-space.

PROOF. (a) If X is a G-space, then X* is a compact regular space by

Theorem 2.11, and it follows by Theorem 2.4(a), [14], that D(X*) 2. The

second inequality follows from the first and Theorem 2.9.

Statement (b) follows immediately from Proposition 2.12 and Theorem 2.4(b),

[4].

(c) If X is a topological G-space, then X is symmetric, and so D(X*) _< I

by (b). If D(X*) _< I, then X is a compact T2 topological space, and hence X*

is regular. By Theorem 2.11, X is a G-space.
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It should be noted that %D(Y) 0 iff Y is discrete, and consequently

%D(X*) 0 iff X is a finite discrete space. If X is not a finite discrete space,

we can replace "D(X*) _< l"by "D(X*) I" in (b) and (c) of Theorem 2.13.

3. R-SERIES.

In this section, we summarize some results on the R-serles of a space

(originally studied in [13] and [14]), obtain a few results on the R-serles of X*,

and lay the groundwork for many of the results of Section 4.

Starting with a space X, an ordinal family of spaces {r X} is defined on the

same underlying set as follows: r0(X X

- x in rlX iff there exist n N and + x in X such that >_ cl
n

X

+ x in rX iff there exist n N, - x in X and < such that >_ cln_x
The family r X} is called the R-series of X. If is the least ordinal such

that rX r+1
X, then ryX is denoted Xr, and is called the length of the

R-serles of X and denoted by R(X). Note that X is regular iff R(X) 0. It is

shown in [13] that X is the finest regular space coarser than X, and X is called
r r

the regular modification of X.

Of course X will not in general be T
2

even when X is T2. A T
3 space

r

associated with X (we use T
3

to mean regular plus TI) is constructed as follows.

First, define an equivalence relation among the elements of X by x by iff / y

in X Let X be the set of equivalence classes with the quotient convergence
r s

structure derived from X
r

If f X - Y, let X + Y be the (unique) function which makes the
s s

following diagram coute:.

x
X ----+ X ---+ X

r s

Y Y --+ y
r s
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where the maps from X to Xr and Y to Y are the respective identity maps, andr

X’ Y are the respective quotient maps.

Let oX denote the symmetric modification of X, i.e., the finest symmetric

space coarser than X. The next proposition follows immediately from results of

[13] and [14].

PROPOSITION 3. I. If f X - Y is continuous, then each map in the following

commutative diagram (in which all non-labeled vertical maps are f and all non-

labeled horizontal maps are identities) is continuous.

X --+ R1 X --+

y --+ rl y --+

X
--+ r X --+ --+ X --+ gX --+ X

r s

--+ r Y --+ --+ Y --+ gY --+ Y
( r s

PROPOSITION 3.2. For any space X, rlX is a subspace of rlX*.
PROOF. Let XI be the restriction of rlX* to X Since i* X --+ X* is

continuous, it follows from Proposition 3.1 that i* :r I X - rI X* is continuous,

and thus r I X >_ XI. On the other hand, let -+ x in XI. Then there is Q --+ x
,

in X and n N such that cl, Since --+ x in X* there is --+ x

in X such that >_ * and so we have > ClX,n , clx,n cl (cl-l’),

by Lemma 2.4 and Corollary 2.6. Since F(X), >_ cl , and so --+ x

in rlX.
PROPOSITION 3.3. If X is a locally compact T

3
space, then r

2
X is a subspace

of r2 X*.

PROOF. It is sufficient to show that for any A c__ X, clix A (clix, A)N X

for all n 6 N, and’this will be proved by induction. For n I, the equality

follows by Proposition 3.2. If the equality holds for n and x
n+l

A) 0 X,(Clr
IX*

then there is --+ x and k { N such that (clxk, F) (clIX, A) # for all

F Since X is locally compact and T3, we may assume without loss of
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From this observation, along with the induction hypothesis, we may conclude that

x In+l Ac+/-rlX
X* To establish thisIt is not true in general that rX is a subspace of r

fact, we need to make use of some theorems from [9].

A space X is defined to be completely regu.lar if it is a subspace of a

symmetric compact space. It is shown in [9] that X is completely regular iff it

is a symmetric space with the same ultrafilter convergence as a completely regular

topological space. Let mX denote the finest completely regular space coarser than

X A space X is defined to be 0-reular if --+ x implies claX --+ x. It is

proved in [9] that X is m-regular iff X is a subspace of a compact regular space.

The m-regular spaces include the completely regular spaces and also the c-embedded

spaces of Binz [I].

PROPOSITION 3.4. (a) If X is a regular space which is not m-regular, then X
r

is not a subspace of X* R(X*)r
and >_ 2.

(b) If X is a locally compact T
3 space which is not m-regular, then

R(X*) > 3.

PROOF. The first part of (a) follows from the aforementioned character-

ization of m-regular spaces as subspaces of compact regular spaces. The two

statements concerning R(X*) follow by Proposition 3.2 and 3.3, respectively.

For any space X, let C(X) be the set of all continuous real-valued functions

on X. A T3 topological space X for which C(X) consists only of constant functions

is an example of a regular space which is not m-regular; for this space, R(X)=0
and R(X*) >_ 2. An example of a regular space X for which R(X*) >_ 3 is obtained

with the help of the following lemma.

LEMMA 3.5. A locally compact T
3 space X is m-regular iff C(X) separates

points in X.
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PROOF. If X 0X, then wX is T
2

and so C(X) separates points in X.

Conversely, if --+ x in X, then contains a compact set A. Since

separates points in X, wX is T2 and so the subspaces XIA and XIA have the same

ultrafilter convergence. It follows that clX Clx --+ x in X, and therefore

X is w-regular.

EXAMPLE 3.6. Let X be the set [0, I] If s is a sequence on the set X,

let denote the filter generated by s in the usual way. Let be the filter

generated by the sequence (). Define a convergence on X as follows:

(I) If x {0, I}, then -+ x iff there is a sequence s converging to x in the

usual topology such that >_ (2) --+ 0 iff there is a sequence s con-

verging to 0 in the usual topology, but not a subsequence of (), such that

>- (3) --+ I iff >_ where s is a sequence converging to 1 in
s s

the usual topology, or else >_ I. One may easily verify that the space X

is locally compact and T3, but C(X) will not separate the points 0 and i. Thus,

by Lepta 3.5, X is not w-regular, and it follows from Proposition 3.4 that

R(X*) >_ 3, whereas R(X) 0; this result contrasts with the conclusion of

Theorem 2.9. One can also show (we omit the details) that 6--+ I in r
3
X*. Since

r3
X =X, it follows that r3

X is not a subspace of r3
X*. This shows that the con-

clusion of Proposition 3.3 cannot be improved without imposing additional

conditions.

Gazik showed in [4] that a T
3
pretopologlcal G-space is a completely regular

topological space. Another result along these lines is

PROPOSITION 3.7. (a) A symmetric G-space is completely regular.

(b) Every G-space’ is w-regular.

PROOF. These statements follow immediately from Theorem 2.11, Proposition

2.12, and the characterization of w-regular spaces, obtained in [9].
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THEOREM 3.8. Let X be a space.

X*(a) X is regular iff X is a subspace of rI

(b) X is e-regular iff X is a subspace of X*
r

(c) X is completely regular iff X is a subspace of X*.
Proof. Statement (a) follows immediately from Proposition 3.2. Statements

(b) and (c) are proved in [9].

For topological spaces X and Y, function f X --+ Y is defined to be

@-continuous if, for every x E X and every neighborhood V of f(x), there is a

neighborhood of f(x) such that f(c %< c_ Cly V.

PROPOSITION 3.9. Let f X --+ Y, where X and Y are topological spaces.

Then f X --+ Y is @-continuous iff f r I X --+ rlY is continuous.

PROOF. Let f X --+ Y be @-continuous, and let --+ x in rlX. Then there

is --+ x in X such that >- clx >- clx b(x), where (x) is the neighborhood

filter at x. By @-continuity, f(clX b (x) >- cly b(f(x)), and so

f() >_ Cly b(f(x)). The latter filter rlY-converges to f(x), and so

f :rlX --+ rlY is continuous. For the converse argument, one easily see that

f rlX --+ rlY implies f(clx (x)) > Cly b(f(x)) for all x E X, which is

equivalent to 8-continuity of f X --+ Y.

The characterization of 8-continuity given in Proposition 3.9 is not suitable

for a purely topological investigation, since rlX may fail to be topological even

when X is topological. Perhaps this suggests that convergence spaces are the

natural realm for the study of 8-continuity. But in any event, we shall define

a function f X --+ Y between arbitrary convergence spaces to be @-continuous

if f rlX --+ rlY is continuous.

More generally, if P is any function property, then f X -- Y is defined

to have property @-P if f rlX --+ rlY has property P. Thus, one can speak of

8-open maps, @-quotient maps, etc. Some of these "@-properties" will be studied
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briefly in Section 6.

4. NATURAL EXTENSIONS.

Let X and Y be spaces and consider a function f X --+ Y. A function

X* --+ Y* is called a natural extension of f if the following conditions are

satisfied:

(2) If X’ and f( is convergent in Y, then f,() is an element of Y to

which f () converges.

(3) If X’ and f() Y’ then f,() f() Y’

If X’ implies f(9 Y’, then f is said to be weakly proper... If

f X --+ Y is a weakly proper function, or if Y is T2, then the natural extension

f, is unique; in general, f may have many natural extenm,ions. In the proposition

and theorem that follow when f X ..--. Y,. f, will be assumed to be an arbitrary

natural extension of f.

The proof of the next lemma is straightforward and will be omitted.

LEMMA 4.1. If f X --+ Y and A c X, then

(a) If f is continuous, then (f(A))* c__ f,(A*) c_i f,(Clx, A) c_ cly, f(A);

(b) If f is continuous and Y is T2, then f,(clx, A) =cly, f(A);

(c) If f is weakly proper, then f,(A*) c (f(A))*.

X* Y*THEOREM 4.2. If f X --+ Y is continuous, then f, --+ is

0-continuous.

(cl, *PROOF. It is sufficient to show that, for each F(X), f,
n-I F)’ by Lenna 2cl, f(). If F ( , then cl,F el, F* clF U [clx

and Corollary 2.6. By continuity of f, f,(cl F) f(cl F) 5_ cl f(F). and

f,(cl-I F)* ely, f(cl-I F)c cly, (cl-If(F))c cln, f(F) follows with the

help of Lemma 4.1. Thus f,(cl, F*) c__ cln=** f(F), and the theorem is proved.
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COROLLARY 4.3. If f X --+ Y is continuous, then each map in the following

commutative diagram (in which all non-labeled vertical maps are f, and all non-

labeled horizontal maps are identities) is continuous.

X* --+ --+ X*r --+ oX* T< X* srI X* --+ - r

r Y* --+ --+ r Y* --+ --+ Y*r --+ oY* --+ Y* s
1 e

y*

The next resu.t closely resembles, but is more general than, the extension

property of the star compactification obtained in [II].

COROLLARY 4.4. If f X --+ Y is continuous and Y is compact and regular,

X*then f, --+ Y is continuous. If Y is also T2, then the extension f, is unique.

Y* X* X* thePROOF Under the given assumptions, Y Y* r I since >- r I

first statement is establis’hed. The second follows from an earlier remark.

In the next section we shall see that continuity of f :X- Y does not

X* Y*guarantee the continuity of f, --+ If X is a regular space, let

X*X r I then by Proposition 3.2 <~ (X~, i*) is a compactification of X.

Our study of the compactification <~ will be limited to the following proposition.

PROPOSITION 4.5. Let X and Y be regular spaces.

(a) If f X Y is continuous, then f, X --+ Y~ is continuous.

(b) X is T
2 iff X is a T

2
G-space.

PROOF. Statement (a) follows immediately from Theorem 4.2.

(b) If X is a T
2

G-space, then X* is regular by Proposition 2.10, and so X X*

is T2. If X is not a G-space, then there is X’ such that > clX
where

X
(X) and # ]If --+ x, then --+ in X~. If X’, then the

on X* generated by converges in X* to both andfilter
1

It is shown in [12] that every completely regular T2 space has a Stone-ech

compactificatlon. Th_-is compactification is regular and T2, has the universal

property relative to the class of completely regular spaces, and agrees with the
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COROLLARY 4.7. If X is a completely regular T
2

space, then (X%, i,-) is

the Stone-Cech copactification of X.

If X is a Tychonoff topological space, then Corollary 4.7 gives a new method

for constructing 8X. Indeed, 8X is in this case the pretopological modification

5. CONTINUITY OF NATURAL EXTENSIONS.

We next consider conditions under which a natural extension f, of a continuous

function f is continuous. For this purpose, we use some additional notation and

terminology.

Let f X --+ Y be a continuous function, and let f, X* --+ Y* be a natural

extension of f For A c X, define A’ { A’ f) converges in Y}. Let
f

Ff,(A) f(A) U f,(A’f) note that Ff,(A) f,(A*) Y. If F(X) define

Ff,() 6 F(Y) to be the filter generated by {Ff,(F) F }; F(X) is said

to be f,-closed if Ff,() f(3).

PROPOSITION 5.1. Let f be a continuous map.

(I) f, is continuous at x f-l(y) iff -+ x in X implies that Ff, --+ f(x) in Y.

-I
(2) f, is continuous at ( f, (Y) N X iff rf,() --+ f, in Y.

(3) f, is continuous at f,
I (g,) iff is f,-closed.

PROOF. If 3 F(X) then one can easily show that Ff 3 >_ (Ff )) (I) and,
(2) follow from these inequalities.

(3) If f, is continuous at f,-I (y,),then Ff, 3 >_ f,(3*) >_ (f(3))*,
,

and hence Ff, 5= f(). Conversely, f,(3*) >- (Ff)* (f)* --+ f, in Y and

thus f, is continuous at f,
i (y.).

COROLLARY 5.2. Let f X --+ Y be continuous, and Y a regular space. Then

-i(I) f, is continuous at all points of f, (Y).

-I(2) f, is continuous iff each f, (Y’) is f,-closed.



466 G.D. RICHARDSON and D.C. KENT

topological Stone-ech compactification relative to ultrafilter convergence when

X is topological. We shall now give an alternate construction of this compactifi-

,
cation using K

For any space X, X% is a compact, regular, T2 space. However it is not

true that X is a subspace of X*_ Recall the notation oX for thegenerally

symmetric modification of X.

THEOREM 4.6. If X is a space such that oX is a subspace of oX*, then gX is

completely regular, Xs is completely regular and T2, and (X% i, is the Stone-

ech compactification of X
s

PROOF. By assumption, OX is a subspace of a compact symmetric space, and

hence completely regular. Xs is T
2 by construction. In the diagram that follows

i, ,
(X --+ gX

X --+ Xss

the maps @X and @X* are strongly open (see Proposition 2.2, [14]). This means

-ithat if --+ e in Xs and x X (e)’ then there is a filter on X such that

--+ x in gX and X() Using this property and the fact that oX and oX*
,

are symmetric, one can easily show that X is densely embedded in X s-s

If Y is a regular, compact, T2 space and f Xs
--+ Y is continuous, then

define F X --+ Y by F(x) f([x]), where [x] is the equivalence class in X
s

defined by x. It is easy to check that F X --+ Y is continuous, and so by

X* *Corollary 4.3 (F,) --+ Y Y is continuous (F,) is clearly an
S S

extension of f, and this. extension is unique because Y is Hausdorff. Thus by

the uniqueness of the Stone-ech compactification established in [12], it follows

that this compactification is equivalent to (X%, i,-).
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(3) If X is essentially bounded, then f, is continuous.

PROOF. Statements (I) and (2) follow immediately from Proposition 5.1 and

the fact that Y is regular. The assumption that X is essentially bounded (see

Section 2 for this definition) guarantees that each f,-I (y,) is f,-closed.
PROPOSITION 5.3. If f X --+ Y is continuous and weakly proper, then f,

is continuous.

PROOF. If f is weakly proper and A c__ X, then A’f . Thus each filter

F(X) is f,-closed. The conditions (I) and (3) of Proposition 5.1 for conti-

nuit# of f, are thus satisfied, while condition (2) is satisfied vacuously.

COROLLARY 5.4. If X is a closed subspace of Y and f :X --+ Y is the identity

embedding, then f, X --+ Y is also an embedding.

PROOF. Since X is closed in Y, f is weakly proper; thus f, is continuous by

Proposition 5.3. f is clearly one-to-one, and by Lemma 4.1, f,(5*) f()*

for all F(X). From this equality, it follows easily that f, is an

embedding.

PROPOSITION 5.5. The following statements about a regular space Y are

equivalent.

(a) Y is a G-space.

(b) Every natural extension of every continuous function into Y is continuous.

(c) If Z and Y have the same set, Z is discrete, and f Z Y is the

identity, then f, is continuous.

PROOF. (a) (b). If f X --+ Y is continuous and Y is a G-space, then Y

X* *is regular by Theorem 2.11 and so f, --+ Y is continuous by Corollary 4.4.

(b) (c). Obvious.

(c) (a). If Y is not a G-space, then there is Y’ such that cly #

Since Y is T1
and Z is discrete, it follows that F

f
# for some natural

extension f, Thus is not f,-closed, and by Proposition 5.1 f, is not
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continuous.

Te final result in this section is analogous to Proposition 5.1, but

involves e-continuity rather than continuity. Since this result is of marginal

interest, we shall omit the proof.

PROPOSITION 5.6. Let f X--+ Y be a e-continuous map.

(a) f, is e-continuous at each point x X.

f, _- n
--+ f, in fly for) is e-continuous at f,l (y) X’ iff f(cl X

each n I.

(c) f, is e-continuous at f,
1 (y,) iff, for each n I, there is m 1 such

f x >_ f ).

6. QUOTIENT EXTENSIONS.

In this concluding section, we shall consider the circumstances under which

f, will possess certain quotient-type properties. We begin with definitions of

the properties to be considered.

The term map will be used to mean a continuous, onto function. Note that if

X* Y*f X - Y is onto, then any natural extension f, --+ is also onto.

I. f is proper if f is a map and, whenever --+ y in Y, and is an u.f.

on X such that f() , then there is x f-l(y) such that --+ x.

2. f is a convergence quotient map if f is a map and, whenever --+ y in Y,

there is x f-l(y) and --+ x in X such that f()

3. f is perfect if f is a proper convergence quotient map.

4. f is open if f is a map and whenever is an u.f. on Y which converges

to y, and x f-l(y), then there is an u.f. - x such that f()

5. f is closure-preserving if A ! X implies f(cl
X
A) cly f(A).

Further information about these properties may be found in [6], [8], and

[10]. Recall that if P represents any of the above properties, then f :X --+ Y

is said to have property e-P if f r iX --+ r lY has property P.
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It is clear that a proper map is weakly proper, and that a weakly proper

map onto a T
2 space is proper.

In all of the propositions that follow, f denotes a function from a space

* y*X into a space Y, and f, X --+ denotes a natural extension of f.

PROPOSITION 6.1. If f is a proper map, then f, is also a proper map.

PROOF. Suppose that is an u.f. on X such that f,() c in Y*

Then there exists an u.f. on Y such that f() >_ N*, where * a In

Y* Suppose that G--- t in X* then there exists a f.lter . on X such that

--+ in X* and >_ *. Hence f() >_ f(*) f()* since f is a

proper map, and thus f(.) and N* are not disjoint filters on This implies

that f() and are not disjoint filters on Y; consequently, f() E.

If Y, then it follows that f,() . If E Y, then since f is a proper

map, . x in X for some x E f-l(c), and thus ---+ x in X*. It follows that f,

is a proper map.

PROPOSITION 6.2. If f is a convergence quotient map, then f, is a conver-

gence quotient map iff f, is continuous.

PROOF. The relation f(A)*
_

f,(A*) is satisfied for each subset A of X, and

hence f,( <_ f( )* for each filter on X. Suppose that * --+ in Y*

and Y; let be any u.f. on X such that f() = Then f,() and

f,(*) _< *. If E Y, then there exists E F(X) and x E f-l() such that

--+ x in X and f() since f is a convergence quotient map. Since

f,( <_ *, it follows that f, is a convergence quotient map precisely when f,

is a continuous map.

COROLLARY 6.3. f, is a perfect map whenever f is a perfect map.

PROPOSITION 6.4. If f is an open, proper map, then f, is open, proper,

0-open, and 0-proper.
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PROOF. It follows by Proposition 6.1 that f, is proper. If f, is also open,

then it follows from Theorem 4.2, [14], that f, is also o-open and o-proper. Thus

it remains only to show that f, is open.

Let 6 (Y*) such that --+ in Y*, and let 8 f,
1 (). Then there is

(Y) such that >_ * and * --+ in Y*. If Y, then 8 X, and

hence there exists exactly one u.f. 3 on X such that 3--+ 8 in X*. Thus

f() , and since f is a proper map, f,( 3*) * -< 6 Let 8 (X*)

contain both 3" and f,
1 () then f,(8) and 8 --+ 8 in X*.

If e Y then, since f is a proper map, 8 6 X, and since f is an open map,

there is ?(X) such that --+ 8 in X and f(3) Then, as in the argument

of the preceding paragraph, there exists an u.f. 8 --+ 8 in X* such that f,(8)

this establishes that f, is an open map.

We omit the straightforward proof the next proposition.

PROPOSITION 6.5. If f is perfect 8-proper map, then f, is a 8-perfect map.

Propositions 6.4 and 6.5 yield the following corollary.

COROLLARY 6.6. If f is an open perfect map, then f, is a 8-perfect map.

PROPOSITION 6.7. If f is a convergent quotient map which is closure preserv-

ing, then f, is a 8-convergence quotient map.
,

PROOF. Suppose that --+ in rlY Then there is F(Y) such that

--+ e and >_ cln, . If Y, then it may be assumed that e-- Y’.
Y

Let 3 6 (X) such that f() then 8 3 X’ and f,( . By Lemma 2.4

and the assumption that f is closure-preserving, it follows that

n ,f*(cln:Ix 3*) -< f,((cl 3)*) Cly, f(clnx 3) Cly, Cly f(,) cl , If

-I
then, since f is a covergence quotient map, there is --+ 8 f () such

that f() . Again, f,(clnlI
) _< cln, *. In both cases cln:1 *X Y X-

rlX*. If f,-l() v cln,+l then --+ 8 in rlX* and f,(E)in
X

Thus f, is a -convergence quotient map.
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The final proposition follows immediately fom Proposition 5.6.

PROPOSITION 6.8. If f is @-continuous and closure preserving, then f, is

@-continuous.

We conclude by citing, without detail, some examples which place limitations

on the types of results obtained in this section. The function f constructed in

Example 4.3 of [14] is perfect but not @-proper; it is also not difficult to show

that in this case f, is not @-proper. Thus, in Corollary 6.6, one cannot drop the

assumption that f is open. There are other examples which show that f, may fail

to be continuous when f is an open, convergence quotient map, and that f, may fail

to be open when f is open and f, is continuous.
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