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ABSTRAC.T. Recent work on lemilocal analysis of nonlinear operator equations is
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i. INTRODUCTION.

In the terminology of Ortega-Rhelnholdt [15], a semilocal analysis for a given
,

equation Fx 0 establishes the existence of a local solution x by showing that
,

a sequence of approximate solutions x converges to x and it also yields com-
n

putable bounds for the errors llx* x II. The operator F is generally assumed
n

to be Frchet dlfferentlable and the basic idea is to take each x as the solution
n

of an approximating linear operator equation. The central result of this kind is

the Kantorovlch theorem for Newton’s method. Most other semilocal results are

related to that famous theorem, since they involve llnearlzatlon processes based

on approximate derivatives. The theory carl be used to establish the existence

and uniqueness of solutions for specific equations w-Ithout finding the solutions.

Unfortunately, its application to real computation is fraught with difficulties.

Our purpose here is to describe research which attempts to bring semilocal theory
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a bit closer to the computer. We will do this in two ways. First, we will state

and prove a refined version of the Kantorovich theorem, which includes new error

bounds. Secondly, we will give a brief and informal survey of related topics,

with a view of bringing out the benefits and drawbacks of semilocal analyses.

2. THE KANTOROVICH THEOREM.

Let X and Y be Banach spaces and let D be an open convex subset of X. The

open ball {x: II x-x0 II < r} and its closure are denoted by S(x0,r) and (x0,r)

respectively.

THEOREM. Let F:D c X/ Y be Frchet differentiable. Assume that F’ (x 0) is

invertible for some x0 e D, and that

II F’ (X0)-IFx 0 II <a’

(x0,t* c D, h 2Ka< i, t* (i-/i h)/K.

Then

i) F’ (x) is invertible for every x e S(x0,t*).

ii) The iterates Xn+I xn F’ (Xn)-IFxn remain in S(x0,t*) and converge to a

root x* of F.

iii) The root x* is unique in DN S(x0,t**), t** (i+/i- h)/K.

Moreover, if

g(t) -t+a (t*-t) (t**-t),

to 0, tn+1 tn g’ (tn)-ig(tn),

then

iv)
t*-tn+1

an (t*_tn)2’

t*-tn t*-tn
v) llx*- Xnl < II Xn-Xn-lll < II Xl-X011

(tn-tn-1 tl
for every e [0,2].



SEMILOCAL ANALYSIS OF NONLINEAR OPERATOR EQUATIONS 555

2 llXn+l-Xn II __i (/l+4anl xn+l_xn[ -i) S llx*-Xnllvi)

4’( ")
<

tn+l_tn 2 2an
I + tn_tn_1

Also, the uniqueness statement (iii) and the bounds in (iv), (v), (vi) are best

possible.

PROOF. By invariance of Newton iterates under affine transformations,

Xn/I xn G,(Xn)-iGxn

The Banach lemma yields (i).

Gx F’(x0)-IFx.

If both x, Hx x-G’(x)-iGxe S(x0,t*) then

(2.1)

K/2 xll < (2.2)-x xoil I x-xll =

The sequence {tn} satisfies the conditions II Xl-XOll tl=a, tn-I < tn, lim tn t*,

and

K/2 tn+l tn (2.3)
l-Ktn (tn tn_l)2

An induction argument shows that {xn} exists and that {tn} is a majorizing

sequence. Statement (ii) follows; the continuity at x* of F’ implies that Fx*=0.

Statement (iii) follows by consideration of the simplified Newton method. Lettinr

en t*-tn, we have

en
e 0 t*, en+l 2en+-A" A t**-t*, (2.4)

iiG’ (Xn)-lll -<-g’ (.tn)-1 1 2 en+l (2.5)
1 Ktn K en2

Use (2.5) and a mean-value theorem on

II x* Xn+l II < II G’ (Xn)-I II II Gx* Gxn G’ (Xn)(x*-xn)II

to get (iv). Use i2.2) and (2.3) as in [ii] to derive (v).

From the identity Xn+l-xn (x*-xn) + G’ (Xn)-l(Gx*- Gxn- G’ (xn) (x*- xn)) and

(2.5), we get

en+l llx*-XnIl2 + llx*-Xnll- llXn+l-Xnll >0.
en2

The sharper lower bound in (vi) follows. Bring the square root in that bound to
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the denominator, use II Xn+l Xnll < tn+l tn and

en+l tn+l tn

e2n (tn tn_l)2

which results from (2.3) and (2.5), to get the other lower bound. Take F=g,

x0=t0 to obtain the optimality of (iii), (iv), (v). The weaker optimality of (vi)

is obtained by constructing a scalar function as in [5]. This completes the

proof.

We discuss features of the above version of the Kantorovich theorem:

1) The theorem is affine invariant and the transformation (2.1) is an

optimal scaling [4]. The parameter h may be considered a measure of the non-

linearity of F.

2) The estimates given in (iv) appear to be new. They show that the

majorizing sequence yields not only second r-order convergence, but the stronger

second q-order as well. Indeed, if h < 1 then (2.4) shows that lim an I/A < .
3) The upper bounds in (v) were derived by Miel [11]. The bound with

II Xn- Xn-1 II is usually considerably better than the one with II Xl x0 II .
Both bounds are mnotone decreasing functions of . The well known upper bounds

of Gragg-Tapia [5] correspond to the case i. The bound with II Xn-Xn-i II 2 is

sharper. We prove below that it is also sharper than the upper bound of Potra-Ptk [17].

4) Statement (vi) gives an improvement of the lower bound of Gragg-Tapia

[5], since the latter can be shown to be equi.valent to the left-most expression.

5) The bounds are expressed in terms of the majorizing sequence, but since

Newton iterates for quadratic polynomials are known in closed form [9, p.28] or

[16, Appendix F], these bounds can be given explicitly.

2 1 NONDISCRETE INDUCTION

Like the principle of majorants, this technique developed by Pt/tk [20,21,22]

yields simultaneously convergence and computable error bounds. We briefly de-

scribe the method. Let H:X/X and consider the iteration

x0 eX, xn HXn_I. (2.6)
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Let T denote an open interval contained in (0,) The following lemma, whose

proof can be found in [17], is a special case of the Induction Theorem of Ptk

[20].

LEMMA. Assume that there exists

1) a map :T/T such that the series

u(r) r + (r) + ((r)) + + n(r) +

converges for every r T,

2) a family of sets Z(r)cx, r e T, such that

x0 Z(r0) for some r0 cT

F(x) S(x,r) NZ((r)) whenever rT and x Z(r).

Then the iterates (2.6) converge to some x* X and

Ii*-xnll "r0)). -.)

n- .Cn, n II n-n- II, en e ero oun

li*- nll (dn) dn (2.8)

are also valid.

With the ntation here, the Kantorovich theorem can be established by taking

r2
(r)

2 /r2 -and Z(r) the set of elements x X such that

II x-x011 < u(a) -(r),

F’ (x) exists,

inf II F’ (x)yll > b-I -K[o(a)-u(r)],

II ’ ()-11 <r.

Ptk [21] thus derived the a priori upper bounds of Gragg-Tapia with the use of

(2.7), and recently, Potra-Ptk [17] used (2.8) to obtain a posteriori bounds

sharper than those of Gragg-Tapia.

The Potra-Ptk bounds are

c/, II n+-II II ’-II C/-, II --II,
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(s,t) (S2+4t2+4t(S2+t2)1/2) 1/2 (t+ (S 2 + t2) 1/2),

6(s,t) (S 2+ t2) 1/2- S.

1
The table compares these bounds with (v) and (vi) for the scalar cubic F(x)

(x3-1), with x0 =1.3, a=0.236095, K=0.209727. The bounds generated by the

majorizing sequence are seen to be finer. We prove that (t*-tn) d2n/(tn- tn_I) 2

is generally sharper than 6(A/2,dn) We have

6(s,t) E(s,t) t2 E(s,t) i/((s2+t2)1/2+s).
Use tn-tn_1 en_l-en and (2.4) to get

t* tn A A
(tn_tn_l)2 e(, tn- tn-l) < e(-, llXn-Xn-lll );

for the inequality, use that (s,t) is monotone decreasing in t.

3. INFORMAL DISCUSSION.

In this section, we give a short list of references and we consider benefits

and drawbacks of semilocal analyses.

3.1 SOME REFERENCES.

A history of the Kantorovich theorem and some of its relatives is given in

Ortega-Rheinboldt [15, p. 428] and in Ostrowski [16, p. 404]. There must be dozens,

if not hundreds, of semilocal theorems for nonlinear operator equations, and it

is impossible to attempt here a comprehensive list of references. With a dis-

claimer for omissions, we mention references for representative results.

Krasnosel’skii and Rutitskii studied a class of Newton-type iterative processes;

equations with nondifferentiable operators were treated by Zinchenko and also

Kusakin; see [8, Bibliography] for the references.

A refinement of the majorant technique was used by Ortega [14] to present an

elegant proof of the Kantorovich theorem, and more generally, by Rheinboldt [25],

to establish a general semilocal theory for itgration of the form,

Xn+1 xn- D(Xn)-iFxn (3.1)

where D(x) is an approximate derivative of F satisfying certain conditions. The
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corresponding majorizing sequence is generated by

to 0, tn+1 tn-d(tn)-If(tn), (3.2)

where d and f are respectively a linear and a quadratic polynomial. These scalar

functions satisfy the convergence conditions for a subclass of methods, including

Newton’s method when D(x) F’ (x), and (3.2) then becomes a special case of (3.1)

with F=f, D=d, x0=t0. Miel [i0,ii] showed that under the hypotheses of

Rheinboldt’s theorem, the majorizing sequence yields

t*-t
n t*-tn

(tn_tn_l) l[Xn-Xn-lll < [IXl -x011 0<<i. (3.3)

These error bounds are clearly optimal for the proper subclass of methods. For

the Newton method, as shown in the previous section, the stronger statement with

0< < 2 is valid.

Rheinboldt’s hypotheses on D(x) in the semilocal analysis of (3.1) turn out

to be restrictive; Dennis [1] used a majorizing sequence to extend the result for

methods which have approximate derivatives of bounded deterioration, and thus

include certain generalized secant algorithms. Consideration of these

algorithms led to the research on so-called quasi-Newton methods, surveyed in

[2,3]. Potra-Ptk [17,18,19] used nondiscrete induction to obtain convergence

and error bounds for the Newton, multistep Newton, and generalized regular falsi

methods. We proved that their upper bound for Newton’s method is related to, but

not as sharp as the finer bound in (3.3) with 2.

3.2 ADVANTAGES.

Benefits gained from the Kantorovich theorem and related semilocal theorems

are summarized below:

1) One can establish domains of existence and uniqueness for a solution of

a nonlinear operator equation, with no actual knowledge of the solution.

2) A constructive method for approximating such a solution is provided,

consisting of a convergent sequence of solutions of linearized operator

equations.

3) A domain of attraction S is established with the property that if the
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iterates reach S then they will stay in S and converge to a solution.

4) Error bounds are available provided that one can evaluate the constants

involved in the hypotheses of the theorem.

5) Newton’s method is self-corrective: Xn+1 depends only of F and xn, so

that errors from previous iterates do no propagate.

Property (5) is an advantage of Newton’s method which is not shared by quasi-

Newton methods. We include (4) as an advantage despite the warnings in [1,2]

against the use of majorizing sequences for getting error bounds. The reasons

cited were the apparent r-order of convergence, the coarseness of the bounds, and

the difficulty in calculating the required constants. Because of results which

partially overcome these objections, the views against majorizing sequences

should perhaps be re-evaluated. It was shown in the last section that the major-

izing sequence for Newton’s method does imply q-quadratic convergence and that

the bound with II Xn-Xn-lll 2 is sharper than the usual ones with II Xn-Xn-lll and

II Xl-X011- The problems associated with the local nature of the estimates and

the verification of hypotheses, however, do remain. In this connection, we point

to research on computer verification of semilocal conditions by interval analysis

[12,13,23].

3.3. DISADVANTAGES.

From a practical aspect, statement (2) above is no panacea to the numerical

analyst: each linear operator equation in the constructive process must still be

reduced to a computable form. This brings us to the first drawback in our list.

i) The theory does not provide a means of discretizing an operator equation

into a corresponding finite system of equations.

2) Stringent hypothese require that the iterates be in the vicinity of a

root before a theorem will guarantee convergence and provide error bounds.

3) The computation of the constants in these hypotheses, especially the

Lipschitz constants, is difficult.

4) Newton’s method requires a new Frchet derivative F’ (xn) at each step n.



562 G.J. MIEL

5) A system of linear equations must be solved at each step. For Newton’s

method in dimension N, this requires a costly 0 (N3) arithmetic operations.

With respect to (4), it should be noted that derivatives have been compiled

by suitable software as easily as functions [7,24]. The research on quasi-Newton

methods is motivated by (4) and (5). These methods use ingenious approximate

Jacobians to avoid the evaluation of F’ (x) and to reduce from 0(N3) to 0(N2) the

cost in the solution of linear systems. The price paid is a reduction from

second order to superlinear convergence. Local analysis of quasi-Newton

algorithms has made two fundamental contributions to the theory of iterative

methods: the notion of bounded deterioration of approximate derivatives and a

characterization of q-superlinear convergence. The algorithms have been studied

extensively for optimization problems [2,3].
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