
493

ON K-TRANSFORM

C. ASlM
Department of l[athe’matics
The University of Calgary

Calgary, Alberta
Canada

(Received Hatch 12, 1980)

ABSTRACT.

Using a coblnatlon of infinite order linear dlfferentlal operators and

Integral operators, the inversion of K-transform is establlshed. Inversion

procedures for Laplace transform and Potential transform are derived as special

cases.

KEV 0R$ A PES. /(-transform, Laplace transform, dlfferentlal operators.
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i. INTRODUCTION.

In this paper, we discuss the inversion of the K-transform, in Hilbert space

L2(0,(R)). The method involves only the real analysls and employs dlfferentlal

operators of infinite order, cf [ 43 and [ 6, Chapter vii] An algorithm for



494 C. NASlM

inverting the bilateral Laplace transform is established as a special case. Also

some examples are given to illustrate the procedure.

LEMMA i. [5, p.94] Let y(z) L2(0,) and

then

F(s) 0 f(x)xS-I it, < t <

1 [1/2+i tf(x) +/-m
t 1/2-it

F(s)x-sds

F is called the Mellin transform of f.

LEMMA 2. [5, p.95] If f and g L2(0,) and have Mellin transforms F and G

respectively, then

0 - f g(xt) 1

Next some operational considerations.

d
If 8 =-z then it is an easy matter to see that

8n[x-8] snx-s, + it, < t <

Therefore

pn(8) [z Pn

where pn(8) is a polynomial of degree n in 8; consequently

p(e)[x-8] limpn(e)[x-8]

-8p(s)x
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Also,

x-s e in nn[ -- N k
llm Z (8 in n) [-8
N-, k=o k’.

r (s In n) -s s -slira k! x =nx
N-w k=o

IWth this understanding, we interpret the operator (1 e)

tial operator of infinite order, [6, p.234], such that

a linear dlfferen-

r(1 B) [x-S] lira n
e

i [x-s]
n-,, k--I

I -Sa:r (1 s)

Similarly

i -8 I -s
r( S) [ r( Ss) (’)

Next we define the operator F( 8B) as having the property that

(1.2)

This is not a dffferential operator in the above sense, but behaves in the manner

of (1.2) for all 8 c + it, < t < , R(8) < -82. THE MAIN RESULT

THEOREM i. Let the functions f and (L2(0,). Define

f(x) (xt)K (xt)@(t)dt
o

i
where II -<%- > 0 and K being the usual modified Bessel function of order
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If

II_<1/2 S > 0 then

l i(R) (mt)SJ (xt)f(t)dt
0

[R()] (), a.a. 0.

PROOF. Note chat the integral defining the function f is absolutely conver-

gent, since L2(0,(R)) and taKe(t) ( L2(0,(R)) due to the hypotheses.

Now,

R() ()()f()d
0

I(R) I (ut)2 (xt)8J (zt)dt
o o

r 0 0 x

The change of order of integration is Justified by absolute convergence

() (u)
0

using the asymptotic expansions of the Bessel functions J and K. The t-integral

can be evaluated, [I(II), p.137] so that (2.1) above gives,

,,,h,., and a 1/2(x-I-t+l-I’-a.+13), b-1/2(u-+l-l-c.), 2F! being the

Hypergeometric function.
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Let,

where

() k()d

2a+ F (a) F (b) xa+ (a,b /I _2k(x) r(+l) 2El

Now k (L2(0,(R)) since 8 + v > - and I[ < a +- and further
1
z (o,(R)),

since does, hence by Lemma 2, we have

(s)(s)x-sdo()
1/2-i(R)

where # and K are the Mellin transforms of # and k respectively and [i(I), p.336],

2a+-I r [1/2(u+a+l-s) ]r [1/2(v+8+.)] r [1/2(a-u+l-s) ]
(") ---V-- r [1/2(-S+2-) ]

1 dNext, we apply the operator K(8) where 8 -z to the function R(z), to obtain

]<(o) [}(z)] z(o) 1/2-i-
#(s)z(s)z-s

= 1/2-i(R)
(.)z(s) (s Ix-s]

1 1 -8
Using the results (i.I) and (1.2), we see that K(8) [z-8]

A’8----V a:

Thus,

1 i [%+(R) z-"
K(e) JR(z)]

1/2-i(R)
e(s)K(s) K(s) d- 1/2_(R)

(z), a.a. x > 0,

ias required The bringing of the operator K(8) inside the integral, amounts to
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nothing more than differentiating inside the integral sign.

EXAMPLE i. Let (z) Jn (z). Then

f(x) 2 (xt)Jn (t)Ku (zt)dt
0

2-1/2 -(n+l) F[1/2(n++e+l)]F[1/2(n-++l)]
--q- r

2FII1/2(n+++l)’ 1/2(n-u+e+l); n+l; I
[I(II), p.137]. And

2e F (c)r (,d) x8 tS-o-In(x) -V r (.+i) 0
2Fl c,d; +1; J (xt)dt

where

2a+B-n-I 1/2i-c’ 1-d

I(S-n+v), o, -n, -(S-n-)

[i(II), p.82], where G is Meljer’s G Function.

Now

i
c(o) R(x)

2-nr [1/2(-S+2-8) ]
r [1/2(++l-e) ] r [1/2(v+s+e) ]r [1/2(-+l-e) ]

-n _r ,,.,10 l,l_. x2---2 0,

(S-n+u), o, -n, -(8-n-v)

J (x), as predicted.
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The operator K(’8) applied on (’), is evaluated by writing (’) in terms of

the complex integral and then the differential operator being applied inside the

0
integral to give rl2 ()

3. SPECIAL CASES.

(i) Let + 8 i B + v. The inversion of the main theorem

where

2"+ r [1/2(.+=+l-O)]r [1/2(S++e ]
R(=) (=),

2++l xB+ I U+(x) r(u++l)
o (x+u)u++

giving us an inversion of the generalized Potential transform.

The following special cases provide us with a procedure for inverting Laplace

transform, cf. [3] and [6, p.232].

i i(ii) If B and then Theorem i gives

THEOREM 2. Let and @ ( L2 (0,). Define

f(x) e (t)dt
o

the bilateral Laplace transform of @. If

R(=) 2 I cos xt f(t)dt,
0

then

i
sin 8[R(z)] (x), a.a. x > O.

i i
Here the operator K- is reduced to the operator sin 8. We can inter-

pret this operator by considering the product expansion
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Now if S (a) = wa H 1 then, for example

1 .a 1 s
sin we[za] ll, ,.S(-c*)m- -sin we m

1 1(ill) Put e and 8 v in Theorem i, then we have

THEOREM 3. Let f and # { L2 (0,-). Define

f(z) e-Zt# (t)dt
o

the Laplace transform of . If

then

w j0
sin mt f(t)dt,

1
cos we[R(z)] (z), a.a. z > 0.

i I
Here again the differential operator K(’e) of Theorem i is reduced to cos wS,

i
which can be interpreted in a similar way as the operator sln wS. Also, for

i r1 cos
i meinstance, cos e-- wa

(iv) Hamburger’s formula.

EXAMPLE 2. Let (m) sin2nm. Then by Theorem 3,

f(m) slnZnt
0

e-mtdt (2n).!
Z(z2+2z) (zx+4z)... (x2+(2n)z)

(Hamburger s formula).

Now

R(m) 2 (2n) 0 sin mt
w t t2+2z )(tz4z) .’: .(tZ+4nz )dt

[2, p.414].

Thus, according to Theorem 3
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cos e [R(m)] (_i)n2_2n
n-I

cos e[e + (-i
-0

1 1cos,,ee"= cosine >. k,.
k=o

k- cos
k=O

k 2k k 2k
Z m 1 zk m (-1) n-. cos Z (2)’k=0 k=0

Hence

cos n%q.

cos B[R(=)] (-l)n2-2n 2 Z (-i) cos[2(k-n)n] + (-i)n

k=0

sln2n0:

[2, p.25], as predicted, by the theorem, verifying the Hamburger formula.
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