SEMI SEPARATION AXIOMS AND HYPERSPACES

CHARLES DORSETT

Department of Mathematics, Texas A&M University College Station, Texas

(Received April 21, 1980 and in revised form September 4, 1980)

<u>ABSTRACT</u>. In this paper examples are given to show that s-regular and s-normal are independent; that s-normal, and s-regular are not semi topological properties; and that (S(X), E(X)) need not be semi-T₁ even if (X,T) is compact, s-normal, s-regular, semi-T₂, and T₀. Also, it is shown that for each space (X,T), (S(X), E(X)), $(S(X_0), E(X_0))$, and $(S(X_{S0}), E(X_{S0}))$ are homeomorphic, where $(X_0, Q(X_0))$ is the T₀-identification space of (X,T) and $(X_{S0}, Q(X_{S0}))$ is the semi-T₀-identification space of (X,T), and that if (X,T) is s-regular and R₀, then (S(X), E(X)) is semi-T₂.

<u>KEY WORDS AND PHRASES</u>. Semi open sets, semi topological properties, and hyperspaces.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 54A10, 54B20.

1. INTRODUCTION.

Semi open sets were first defined and investigated by Levine [1] in 1963.

DEFINITION 1.1. Let (X,T) be a space and let $A \subseteq X$. Then A is semi open, denoted by $A \in SO(X,T)$, **iff** there exists $U \in T$ such that $U \subseteq A \subseteq \overline{U}$.

Since 1963 semi open sets have been used to define and investigate many new topological properties. Maheshwari and Prasad [2], [3], and [4] generalized T_i , i = 0, 1, 2, regular, and normal to semi- T_i , i = 0, 1, 2, s-regular, and s-normal,

by replacing the word open in the definitions of T_i , i = 0, 1, 2, regular, and normal by semi open, respectively. Except for s-normal and s-regular, the relationships between these separation axioms have been determined. In this paper, the relationship between s-normal and s-regular is determined, and semi topological properties and hyperspaces are further investigated.

2. S-REGULAR, S-NORMAL, AND SEMI TOPOLOGICAL PROPERTIES.

Maheshwari and Prasad [4] gave an example showing that s-normal does not imply s-regular. That example can be combined with the following example to show that s-regular and s-normal are independent.

EXAMPLE 2.1 Let N denote the natural numbers, let T be the discrete topology on N, let e be the embedding map of (N,T) into $\pi\{I_f \mid f \in C^*(N,T)\}$, and let $(\beta N, W) = (\overline{e(N)}, e)$ denote the Stone-Čech compactification of (N,T). From Willard's book [5], (β N, W) is extremely disconnected, e(N) is open in β N, and B = $\beta N - e(N)$ is infinite. For each $p \in N$ let $N_p = \{n \in N \mid n \leq p\}$. Since for each $p \in N$, there exists a function $f_p: N_p \rightarrow B \times W$ such that (1) if $i \in \{2, \dots, p\}$, then f_i is an extension of f_{i-1} , (2) $x_i \in O_i$ for all $i \in N_p$, (3) if $i, j \in N_p$, then $\overline{0}_{i} \cap \overline{0}_{j} \neq \emptyset$ iff i = j, and (4) $B - \frac{P}{i = 1} \overline{0}_{i}$ is infinite, then there exists a sequence $\{(x_n, 0_n)\}_{n \in \mathbb{N}} \subset \mathbb{B} \times \mathbb{W}$ such that $x_n \in 0_n$ for all $n \in \mathbb{N}$ and $\overline{0}_{m} \cap \overline{0}_{n} \neq \emptyset$ iff m = n. Let $\{a_{n}\}_{n \in \mathbb{N}}$ be a sequence such that $\{a_{n} \mid n \in \mathbb{N}\} \cap \beta \mathbb{N} = \emptyset$ and $a_n = a_m$ iff n = m, let $V = \{x_n \mid n \in N\} \cup \left(\bigcup_{n \in N} \{U_n = 0_n \cap e(N)\}\right) \subset \beta N$, let W_1 be the relative topology on V, and let $X = V \cup \{a_n \mid n \in N\}$. Since U_1 is countably infinite, then $U_1 = \{y_n\}_{n \in \mathbb{N}}$, where $y_i = y_i$ iff i = j. For each $i \in N$, let $B_i = \{0 \subset X - (\{x_n \mid n \in N\} \cup \{a_n \mid n \neq i\}) \mid 0 \cap U_n \in W_1 \text{ for all }$ n $\in \mathbb{N}$, $x_n \in \overline{0 \cap U_n}$ except for finitely many $n \in \mathbb{N}$, and $a_i, y_i \in 0$, and let $W_2 = \bigcup_{i \in N} B_i$. Then $W_1 \bigcup_{i \in N} W_2$ is a base for a topology S on X, (X,S) is s-regular, semi-T₂, and T₀, and (X,S) is not s-normal since $A = \{a_n \mid n \in N\}$ and $C = \{x_n \mid n \in N\}$ are disjoint closed sets and there do not exist disjoint semi open sets containing A and C, respectively.

Semihomeomorphisms and semi topological properties were first introduced and investigated by Crossley and Hildebrand [6]. DEFINITION 2.1. A 1-1 function from one space onto another space is a semihomeomorphism iff images of semi open sets are semi open and inverses of semi open sets are semi open. A property of topological spaces preserved by semihomeomorphisms is called a semi topological property.

Example 1.5 in [6], which was used to show that normal and regular are not semi topological properties, also shows that s-normal and s-regular are not semi topological properties.

Clearly, semi-T_i, i = 0, 1, 2, are semi topological properties.

3. HYPERSPACES AND SEMI SEPARATION AXIOMS

DEFINITION 3.1. Let (X,T) be a topological space, let $A \subset X$, and define S(X), S(A), and I(A) as follows: S(X) = {F $\subset X \mid F$ is nonempty and closed}, S(A) = {F \in S(X) | F \subset A}, and I(A) = {F \in S(X) | F $\cap A \neq \emptyset$ }. Denote by E(X) the smallest topology on S(X) satisfying the conditions that if G \in T, then S(G) \in E(X) and I(G) \in E(X). Then (S(X), E(X)) is called a hyperspace [7].

Michael [8] showed that for a space (X,T), $\mathcal{B} = \{\langle G_1, \ldots, G_p \rangle \mid p \in \mathbb{N} \text{ and } G_i \in T$ for all $i \in \mathbb{N}_p = \{1, \ldots, p\}\}$ is a base for E(X), where \mathbb{N} is the natural numbers and $\langle G_1, \ldots, G_p \rangle = \langle G_i \rangle_{i=1}^p = \{F \in S(X) \mid F \subset \bigcup_{i=1}^p G_i \text{ and } F \cap G_i \neq \emptyset$ for all $i \in \mathbb{N}_p$ }, and observed that for each space (X,T), (S(X), E(X)) is T_0 . Since T_0 implies semi- T_0 , then for each space (X,T), (S(X), E(X)) is semi- T_0 . The following example shows that (S(X), E(X)) need not be semi- T_1 even if (X,T) is compact, s-normal, s-regualr, semi- T_2 , and T_0 .

EXAMPLE 3.1 Let X = {a,b,c,d} and T = {X, ϕ , {b}, {d}, {b,d}, {a,b,d}, {b,c,d}}. Then (S(X), E(X)) is not semi-T₁ since {a,b,c}, X \in S(X) such that {a,b,c} \neq X and there does not exist a semi open set containing {a,b,c} and not X.

In Willard's book [5], T_0 -identification spaces are discussed.

DEFINITION 3.2 Let R be the equivalence relation on a space (X,T) defined by xRy iff $\overline{\{x\}} = \overline{\{y\}}$. Then the T₀-identification space of (X,T) is (X₀, Q(X₀)), where X₀ is the set of equivalence classes of R and Q(X₀) is the decomposition topology on X₀, which is T₀. This author [9] used T_0 -identification spaces to show that hyperspaces of R_0 spaces, spaces which were first defined and investigated by Davis [10], are T_1 . DEFINITION 3.3. A space (X,T) is R_0 iff for each $0 \in T$ and $x \in 0$, $\overline{\{x\}} \subseteq 0$.

Since T_1 implies semi- T_1 , then the hyperspace of each R_0 space is semi- T_1 . Semi open sets were used by Crossley and Hildebran [11] to define and investigate semi closed sets and semi closure.

DEFINITION 3.4. Let (X,T) be a space and let A, B \subset X. Then A is semi closed iff X-A is semi open and the semi closure of B, denoted by scl B, is the intersection of all semi closed sets containing B.

This author [12] used semi closure to define and investigate semi- T_0 -identification spaces.

DEFINITION 3.5. Let R be the equivalence relation on a space (X,T) defined by xRy iff $scl{x} = scl{y}$. Then the $semi-T_0$ -identification space of (X,T) is (X_{S0}, Q(X_{S0}), where X_{S0} is the set of equivalence classes of R and Q(X_{S0}) is the decomposition topology on X_{S0}, which is $semi-T_0$.

This author [13] and [12] showed that the natural map P: $(X,T) \rightarrow (X_0,Q(X_0))$ is continuous, closed, open, onto, and $P^{-1}(P(0)) = 0$ for all $0 \in T$ and that the natural map P_S : $(X,T) \rightarrow (X_{S0}, Q(X_{S0}))$ is continuous, closed, open, onto, and $P_S^{-1}(P_S(0)) = 0$ for all $0 \in SO(X,T)$. These results are used to obtain the following result.

<u>THEOREM 3.1</u>. For a space $(X,T), (S(X),E(X)), (S(X_0),E(X_0))$, and $(S(X_{S0}),E(X_{S0}))$ are homeomorphic.

PROOF: Let f: $(S(X), E(X)) \rightarrow (S(X_0), E(X_0))$ and let f_S : $(S(X), E(X)) \rightarrow (S(X_{S0}), E(X_{S0}))$ defined by f(F) = P(F) and $f_S(F) = P_S(F)$. Then f and f_s are homeomorphisms.

<u>THEOREM 3.2</u>. If (X,T) is $R_0, G \in T$, and $F \in S(X)$ such that $F \cap \overline{G} \neq \emptyset$, then $S(\overline{G}) = \overline{S(G)}$ and $F \in \overline{I(G)}$.

PROOF: Since $S(G) \subseteq S(\overline{G})$, which is closed, then $\overline{S(G)} \subseteq S(\overline{G})$. Let $A \in S(\overline{G})$. Let $(B_i)_{i=1}^{P} \in B$ such that $A \in (B_i)_{i=1}^{P}$. Then $A \subseteq \overline{G}$ and

 $\emptyset \neq A \cap B_i \subset \overline{G} \cap B_i$ for all $i \in N_p$, which implies $G \cap B_i \neq \emptyset$ for all $i \in N_p$. For each $i \in N_p$ let $x_i \in G \cap B_i$. Then $\overline{\{x_i\}} \subset G \cap B_i$ for all $i \in N_p$ and $\bigcup_{\substack{i \in N_p \\ p = \overline{S(G)}}} \overline{\{x_i\}} \in S(G) \cap \langle B_i \rangle_{i=1}^p$. Thus $A \in \overline{S(G)}$ and $S(\overline{G}) \subset \overline{S(G)}$, which implies $S(\overline{G}) = \overline{S(G)}$.

Let $\langle U_i \rangle_{i=1}^m \in \mathcal{B}$ such that $F \in \langle U_i \rangle_{i=1}^m$. Then $F \subset \bigcup_{i \in N_m} U_i \in T$ and $F \cap \overline{G} \neq \emptyset$, which implies $G \cap \left(\bigcup_{i \in N_m} U_i \right) \neq \emptyset$. Let $y \in G \cap \left(\bigcup_{i \in N_m} U_i \right)$ and for each $i \in N_m$ let $y_i \in B_i$. Then $\{\overline{y}\} \cup \left(\bigcup_{i \in N_m} \{\overline{y_i}\}\right) \in I(G) \cap \langle U_i \rangle_{i=1}^m$. Hence, $F \in \overline{I(G)}$.

<u>THEOREM 3.3.</u> If (X,T) is s-regular and R_0 , then (S(X),E(X)) is semi-T₂. PROOF: Let A, B \in S(X) such that A \neq B. Then A - B $\neq \emptyset$ or B - A $\neq \emptyset$, say B - A $\neq \emptyset$. Let x \in B - A. Then there exists disjoint semi open sets 0 and W such that x \in 0 and A \subset W. Let U, V \in T such that U \subset 0 $\subset \overline{U}$ and V \subset W $\subset \overline{V}$. Then I(U) and S(V) are disjoint open sets, B $\in \overline{I(U)}$, and A \in S(\overline{V}) = $\overline{S(V)}$, which implies S(V) U {A} and I(U) U {B} are disjoint semi open sets.

Maheshwari and Prasad [4] showed that every s-normal R₀ space is s-regular. This result can be combined with Theorem 3.3 to obtain the following corollary.

COROLLARY 3.1. If (X,T) is s-normal and R_0 , then (S(X),E(X)) is semi-T₂.

REFERENCES

- LEVINE, N., Semi Open Sets and Semi Continuity in Topological Spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- MAHESHWARI, S. and PRASAD, R., Some New Separation Axioms, <u>Ann. Soc. Sci.</u> <u>Bruxelles</u>, <u>89</u> (1975), 395-402.
- MAHESHWARI, S. and PRASAD, R., On s-Regular Spaces, <u>Glasnik Mat. Ser. III</u>, <u>10</u> (30) (1975), 347-350.
- 4. MAHESHWARI, S. and PRASAD, R., On s-Normal Spaces, <u>Bull. Math. de la Soc.</u> Sci. Math. de la R. S. de Roumanie, <u>T 22</u>(70) (1978), 27-30.
- 5. WILLARD, S., General Topology, Addison-Wesley Publishing Company, 1970.
- <u>CROSSLEY, S. and HILDEBRAND, S.</u>, Semi-Topological Properties, <u>Fund. Math.</u>, <u>74</u> (1972), 233-254.
- 7. FRINK, O., Topology in Lattices, Trans. Amer. Math. Soc., 51 (1942), 569-582.
- MICHAEL, E., Topologies on Spaces of Subsets, <u>Trans Amer. Math. Soc.</u>, <u>71</u> (1951), 152-182.
- DORSETT, C., T₀-Identification Spaces and Hyperspaces, <u>Ann. Soc. Sci.</u> <u>Bruxelles</u>, <u>91</u> (1977), 200-206.
- DAVIS, A., Indexed Systems of Neighborhoods for General Topological Spaces, Amer. Math. Monthly, <u>68</u> (1961), 886-893.
- CROSSLEY, S. and HILDEBRAND, S., Semi-closure, <u>Texas J. Science</u>, <u>22</u> (1970), 99-112.
- 12. DORSETT, C., Semi-T₀-Identification Spaces, Semi-Induced Relations, and Semi Separation Axioms, Accepted by the <u>Bull Calcutta Math. Soc</u>.
- DORSETT, C., T₀-Identification Spaces and R₁ Spaces, <u>Kyungpook Math. J.</u>, <u>18(2)</u> (1978), 167-174.