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ABSTRACT. We use the B and B* operators of Levin on the Classes P and P* and a

comparison principle to prove a Gauss-Lucas Theorem for differential operators.

The connection with the determination of final sets for differential operators is

then clarified.
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I. INTRODUCTION.

The point of this note is to indicate another value of the classes P and P*

of the entire functions as introduced by B. Ya. Levin (see e.g. Levin [i, Chap. 9]

or Boas [2, Chap. ii]). As we shall see, they are the appropriate classes with

which to obtain Gauss-Lucas and final set results for differential operators of

the types B and B*. In writing this, the author is prompted in part by the remark

of Efimov, Krein and Ostrowski in a recent tribute to Levin [3, pg. 142]:

"Apparently the role of the class P in the theory of entire functions is not com-

pletely clarified". While the author has no claims as to what "the" role is,

the comparison principle presented here has new applications, some of which have

been recently worked out [4, 5, 6, 7].
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First, we recall some definitions [2, Chap. ii].

Definition i. A function is in the class P if it is entire of exponential type,

has no zeros in y < O, or satisfies the equivalent condition h(- /2) > h(/2),

where h is the indicator function of

Definition 2. A B-operator is an additive, homogeneous operator that transforms

functions of exponential type into functions of exponential type and leaves the

class P invariant.

The class of B-operators is fairly large [2], some examples are: D d/dz;

D-I, for In(B) 0; P(D), where P is a polynomial with roots in the lower half

k
plane In(z) 0 and more generally (D) Ek C

k
De, where (z) Ek k z is in

the class P; exp(-cD2) 0(D) with c > 0 and EP; the operator ((D)f)(z)

z+if(t)dt for > O.

Functions of the class P are characterized by their infinite product ex-

pansions [2, Theorem 7.8.3]: A function w(z) of exponential type belongs to the

class P if and only if it has the form (z) Az
m exp(CZ)n=l(l- Z/Zn)eXp(zRe(i/Zn)),

where Im(an) > 0 and 2 In(c) h(- /2)-h(/2) > O, and h is the indicator

function of w.

Well known is the fact that Bernstein’s theorem has been generalized in

various directions using B-operators on the class P[I,2]. In particular, in-

equalities of Bernstein type have been demonstrated for the class of so called

asynnetric entire functions as given in [9,10,ii,12.

The new applications [4,6,7] of B-operators and the class P are based on an

extension of an idea due to Plya [13,14].

Definition 3. Let L be a differential operator and f a function analytic on a

domain D. We say that a point z0 lies in the final set S S(L,f) of f relative

to L when, by considering the iterates Lnf, n 0, i, 2, 3, ..., L0 I, every

neighborhood of z0 contains zeros of infinitely many of the iterates Lnf.

Final sets for derivatives of meromorphic functions and certain restricted

classes of entire functions have been given by Plya [13,14] and Edrei [15,16].
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Definition 4. a) Let f(z) be a trigonometric sum f(z) 7.kakexp(kkZ), where

kk6 C, lie in a bounded set, and 7.klakl < . Let H be the convex hull of the k
and suppose that H is either a line segment or is polygonal. We say that f is

balanced when the following conditions hold:

Letting 6 sPlkk[, the circle ]z 6 contains at least two exponents

kk,...,k k and the coefficients corresponding to these exponents are all nonzero.

b) We say that the finite Fourier integral f(z) (t)dt is strongly

balanced when (t) is bounded and measurable and #(t) LI, L
2

as t -6, +6,

respectively with LIL2 0.

When H [-i6,+i6], for 6 > O, the class of trigonometric sums described in

a) coincides with the class [6] as defined by Levin [i, Chapter 6] and accordingly

its zeros lie in some strip IY[ < h [i, Chap. 6, Theorem 3]. As we shall see, not

only is it true that the zeros of the successive deriva=ives lie in IYl < h as

discussed in [9,10], but the zeros of more general B-operators on these functions

lie in this strip.

Final sets for the B-operator #(D), where D d/dz and (z) is an entire

function of genus i having only real zeros times the factor exp(-az2), a > 0

were determined in [4,5,6] on both balanced exponential sums 7.
k

C
k exp(ilkz),

where the k k are real, and strongly balanced finite Fourier transforms. For the

case of exponential sums, the exponents are allowed to accumulate to the endpoints

+ i6, say, provided they do so at a certain rate. The result is that the final

set consists of a discrete set of points on the horizontal line Im(z)

-(26)’InlC_6/C61 or the whole line, the conditions by which each occurs being

given. A similar result is give for balanced exponential sums Ek C
k exp(kkZ)

Xk 6C’ for derivatives [6].

The fact that the functions we are considering are balanced is important when

has real zeros, for Boas [8] has shown that for an asymmetric entire function f

bounded on the real axis with hf(-n/2) 0, every half plane y > a m 0 contains

zeros of infinitely many derivatives of f, making a final set result unlikely.

However, as shown in [6], it is possible to obtain a nonempty final set with
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asymmetric exponential sums for operators (D), where has nonreal zeros. An-

other reason to start with balanced exponential sums is that the extremal functions

for theorems of Bernstein type are balanced.

We also consider B*-operators on functions of the class P* [i, Chap. 9]. It

is well known that a B*-operator is a B-operator and P c P*. Moreover, f belongs

to the class P* if and only if it is a uniform limit on compact sets of a sequence

of polynomials whose zeros lie in the upper half plane [i, Chap. 8].

The elementary yet useful comparison principle [9,10] is the key to obtaining

final sets for B*-operators.

COMPARISON PRINCIPLE: Let K be a closed subset of the complex plane C and M

a complex linear space of meromorphic functions with poles in K. Let N be that

part of M consisting of functions having no zeros outside K and L a linear operator

from M to M. Then

a) the inequality If(z) Ig(z) l, zEC/K, f,gEM implies the

inequality (Lf)(z) l(Lg)(z)l

if and only if

b) L(N) c N.

This principle is, in essence, a Gauss-Lucas Theorem for B* (and hence B)

operators, simple cases of which were given by Genchev [9,10,17]. Wide applications

have been made of Gauss-Lucas Theorems for derivatives; e.g., Marden [18] and Rubel

[19]. Gauss-Lucas Theorems for operators are the point of Plya’s papers [20,21]

the lengthy proofs of which occur in the paper of Benz [22]. However, the above

principle yields a very simple proof of this type theorem. For example, we dem-

onstrate the following:

THEOREM. Let #(D) be a B*-operator, where (z) is an entire function of

genus i with real zeros times the factor exp(-az2), a O. Let f be an entire

function of order < 2 with zeros in the strip T z: A In(z) B}. Then

(#(D)f)(z) also has its zeros in T.

PROOF. If A 0, then fEP*. If A < 0, then f(z+Ai)EP*, so it suffices to
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let A 0. As (z) belongs to the class P*, (z) can be uniformly approximated

on compact sets by polynomials P (z) whose zeros lie on the real axis, by a char-
m

acterization of the class P* stated earlier. Letting L P (D), L is a B*-oper-

ator. By taking M to be the linear span of the class P* and N the sub-class of M

consisting of those functions in M whose zeros lie in T, since by definition

B*-operators preserve the class P*, L (N) c N. By the comparison principle,
n

If(z) > 0 for zC/T (by hypothesis) implies l(enf)(z)l > 0. By Hurwitz’s

Theorem, l((D)f)(z)l > 0 for zEC/T. Hence (D)f has all its zeros in T.

Using this idea, final sets have been determined for certain B*-operators on

classes of entire functions of order < 2 representable by a Fourier integral

having only real zeros [7]. One is lead to suspect that other final set results

are obtainable for B*-operators by asymptotic methods. A study of the zeros of

the successive iterates of multiplier sequence operators (which includes B-oper-

ators) on analytic functions has been submitted for publication.

Under not too restrictive assumptions related to the continuity of the oper-

ator, Levin [I, Chap. 9] obtains the general form of B and B*-operators.
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