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ABSTRACT. Nagahara and Kishimoto [1] studied free ring extensions B(x) of degree n
for some integer n over a ring B with 1, where X" = b, cx = xp(c) for all c and
some b in B (p = automorphism of B), and {1, x, . . ., xn_l} is a basis. Parimala
and Sridharan [2], and the author investigated a class of free ring extensions
called generalized quaternion algebras in which b = -1 and p is of order 2. The
purpose of the present paper is to generalize a characterization of a generalized
quaternion algebra to a free ring extension of degree n in terms of the Azumaya
algebra. Also, it is shown that a one-to-one correspondence between the set of
invariant ideals of B under p and the set of ideals of B(x) leads to a relation

of the Galois extension B over an invariant subring under p to the center of B.
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1. INTRODUCTION.

Kishimoto [3], and Nagahara and Kishimoto [1] studied free ring extensions of



704 G. SZETO

degree 2 and n for an integer n > 2: (1) B(x) is a free ring extension over a
ring B with 1 with a basis {1, x} such that x2 =xa + b for some a and b in B, and
cx = xp(c) for each ¢ in B, where p is a ring automorphism of B of order 2. (2)
B(x), a free ring extension of degree n > 2 is similarly defined with a basis
{1, x, . .., xn-l}, and xn = b for some b in B and cx = xp(c) for each ¢ in B,
where p is of order n. Some special free ring extensions called generalized
quaternion algebras were investigated by Parimala and Sridharan [2] and the author
Szeto ([4] -~ 15]). One of their results is a characterization of the Galois
extension of B over a subring ([2], Proposition 1.1): Let B(x) be a generalized
quaternion algebra (x2 = -1) over a cummutative ring B with 2 a unit in B. Then
B is Galois over A (={a in B/p(a) = a for an automorphism p of order 2}) if and
only if BQAB(x) is a matrix algebra of order 2. The above characterization was
generalized to a free ring extension of degree n, B(x) with xn = -1 ([4], Theorems
3.4 and 3.5). The purpose'of the present paper is to continue the above general-
ization to a free ring extension. Also, we shall show that there is a one-to-one
correspondence between the set of invariant ideals of B under p and the set of
ideals of B(x). This correspondence will lead to a relation of the Galois extension
B over the invariant subring A under p to the center Z of B over A.
2. PRELIMINARIES.

Throughout, we assume that B is a ring (not necessarily cummutative) with 1,
p an automorphism of B of order n for some positive integer n, A = {a in B/p(a) = a},
and B(x) a free ring extension over B with a basis {1, x, . . ., xn_l} such that
x* =b and ax = xp (a) for some b and all a in B (hence p(b) = b ([1], p. 20)).
Let T be a ring containing a subring R with 1. Then T is called a separable
extension over R if there exist elements {ui, vy /i=1, .. ., m for some integer
m} such that a (zuiﬁvi) = (zuiﬁvi)a for all a in T where # is over R and Xuiv1 =1

([6], [7]1). Such an element Xuiﬁvi is called a separable idempotent for T. If

R is in the center of T, the separable extension T is called a separable R-algebra.

In particular, if R is the center of T, the separable R-algebra T is called an

Azumaya R-algebra ([6], 17]). A commutative ring extension S of R is called a
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splitting ring for the Azumaya R-algebra T if SﬁRT = Homs(P,P) for a progenerator

S-module P ([6], [7]). The ring extension T over R is called a Galois extension

with a finite automorphism group G (Galois group) if (1) R={a in T / a(a) = a
for all a in G}, and (2) there exist elements {ui’ vy inT /1i=1,. . ., m for
some integer m} such that (1) Zuivi =1, and (2) Zuia(vi) = 0 for each a # the

identity of G ([7], [8]).

3. A GENERAL PARIMALA-SRIDHARAN THEOREM.

In this section, we shall generalize the Parimala-Sridharan [2] theorem to
a free ring extension B(x) of degree n for an integer n such that x" = b and
ax = xp(a) for some b and all a in B where p is an automorphism of B of order n.
We note that if B(x) 1is separable over B then b is a unit ([1], Proposition 2.4).
The converse holds if n is also a unit:

LEMMA 3.1. If n and b are units, then B(x) is a separable extension over B.

PROOF. Since b is in A ([1], p. 20) and since pn = the identity, it is

n-l i n-
i=0%
-1 n-l (z i n-i

straightforward to verify that the element u = (Z ) satisfies

the equations: au = ua for all a in B(x), and b ) = 1, where 8 is
over B.

We remark here that there are separable extensions with n (= 2) not a unit
(14], Theorem 4.2). With the same proof as given for Proposition 1.2 in [7] we
have a characterization for Galois extensions of non-commutative rings:

LEMMA 3.2. Let B be a ring extension of A with a finite automorphism group
G such that A = BG (={a in B / a(a) = a for each a in G}). Then B is Galois over
A if and only if the left ideal generated by {a-a(a) / for a in B} = B for any
a # the identity of G.

THEOREM 3.3. Let n and b be units in B. If B is Galois over A which is con-
tained in the centern Z of B with a Galois group {1, p, . . .,pn-l} of order n,
then the free ring extension B(x) of degree n is an Azumaya A-algebra, where x =b
and cx = xp(c) for each c in B.

PROOF. By Lemma 3.1, B(x) is separable over B. Since B is Galois over A,

B is separable over A. Hence B(x) is separable over A ([4], the proof of Theorem 3.4).
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So,it suffices to show that the center of B(x) is A, Let u = z ?:é aixi be in the
center. Then xu = ux. Noting that {l,x,...,xn-l} is a basis for B(x) over B, we
have that ay are in A. Also, au = ua for all a in B, so ai(a—pi(a)) = 0 for each

i # 0. Hence the central elements a, are in the left annihilators of the left ideal
generated by {a-pi(a) / a dn B} for i 4 g, By hypothesis, B is Galois over A, so

a, = 0 for each 1 # 0 by Lemma 3.2. Thus u = a in A. Clearly, A is in the cen-
ter of B(x). Therefore, A = the center of B(x).

By the Parimala-Sridharan theorem ([3], Proposition 1.1), let B(x) be a gen-
eralized quaternion algebra (x2 = -1) over a commutative ring B. Then, B is Galois
over A (= {a in B / p(a) = a for an automorphism p of order 2}) if and only if
BﬁAﬁ(x) is a matrix algebra of order 2 over B. Hence, Theorem 3.3 generalizes the
necessity of the Parimala-Sridharan theorem. For the sufficiency, we first
give a one-to-one correspondence between the sets of ideals of B, of B(x), of A,
and the center Z of B. An ideal I of B is called a G-ideal if p(I) = I. Since

p(Z) = 2, a G-ideal J of Z is similarly defined, where G = Il,p,...,pn-l}

THEOREM 3.4. Let B(x) be an Azumaya A-algebra. Then there exists a one-to-
one correspondence between (1) the set of G-ideals of B, (2) the set of ideals of
B(x), and (3) the set of ideals of A.

PROOF. At first, we want to give a structure of a G-ideal I of B. Since
p(I) = I, xIB(x) c p-l(I)B(x) = IB(x). Hence IB(x) is an ideal of B(x). By hy-
pothesis, B(x) is an Azumaya A-algebra, so IB(x) = IOB(x) where Io = IB(x) n A
([7], Corollary 3.7, P. 54). Noting that {l,x,...,xn_l} is a basis for B(x) over
B, we have I = IoB and Io =1 n A. Next, it is easy to see that JOB is a G-ideal
of B for any ideal JO of A. Thus the set of G-ideals of B are in one-to-one corre-
spondence with the set of ideals of A from the above representation IOB of a G-
ideal I of B. By hypothesis again, B(x) is an Azumaya A-algebra, so the set of
ideals of B(x) and the set of ideals of A are in one-to-one correspondence under
IOB(x)+->I0 for an ideal Io of A. Thus the theorem is proved.

COROLLARY 3.5. Let n and b be units in B. Suppose B is Galois over A which

is contained in Z. Then there exists a one-to-one correspondence between the set

of G-ideals of Z and the set of ideals of B(x).
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PROOF. Since B is Galois over A, B is a separable A-algebra. Hence B is
Azumaya over its center Z ([7], Theorem 3.8, p. 55). Thus the set of G-ideals of
B and the set of G-ideals of Z are in one-to-one correspondence; and so Theorem 3.4
implies the corollary.

Now we show a generalization of the sufficiency of the Parimala~Sridharan
theorem. The set {a in B / p(a) = a} is denoted by B°, Let G' be an automorphism
group, {1, ,...,pnhl} obtained from G (= {1, ,...,pn—l}) by taking m as the minimal
integer such that o™ = the identity on Z. We denote the ideal generated by
{a—pi(a) / a in Z} by Ii for i = 1,...,m1. It is easy to see that each I, is a

i

G-ideal such that I cI € ... € I.. We shall show that the chain of I.'s
m-1 m-2 1 i

characterizes the Galois extension of Z over A. That is:

THEOREM 3.6. If B(x) is an Azumaya A-algebra such that Il = 12 = ... = Im-l’
then Z is Galois over A with a Galois group G'.

PROOF. In case Z = A, the theorem is trivial. Let Z # A. Then m # O.
Clearly, A = BG = ’p =7f = EG'. Now we assume Z is not Galois over A. Then the
ideal Il of Z is not Z ([7], Proposition 1.2, p. 80) since I1 = 12 = ,.. = Im_1 by

hypothesis. Since I, is a G-ideal, I, = IZ for some ideal I of A by Theorem 3.4.

1 1

Hence B(x)/IlB(x) = A/IQABfk) is an Azumaya A/I-algegra ([7], Proposition 1.11, p-
46). But a = p(&) in B(x)/IlB(x) for each a in Z, so 3ax = §ST;$.= Xa. This implies
that Z is contained in the center A/I of the Azumaya A/I-algebra A/IQAB(x). This
is impossible since Z is not contained in A. Thus Z is Galois over A.

COROLLARY 3.7. By keeping the notations of Theorem 3.6, if B is Galois over
A with a Galois group G (= {l,p,...,on-l}) such that Il = 12 = .. = Im-l’ then Z
is Galois over A with a Galois group G', where b and n are units in B.

PROOF. Theorem 3.3 implies that B(x) is an Azumaya A-algebra, so the corollary
is a consequence of Theorem 3.6.

As given in Theorem 3.6, let B(x) be an Azumaya A-algebra. If B is commutative,
B = Z. Now assume B is not Galois over A. Then there is an Ii for some 1 = 1,...,m1

such that Ii ¥ Z. One can show as given in Theorem 3.6 that A/Ii B(x) is an Azu-

QA
maya algebra such that xi is in the center A/Ii' Thus we have a contradiction.

This proves that B is Galois over A. So, Theorem 3.6 generalizes Theorems 3.4 and
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and 3.5 in [4].

4. SPLITTING RINGS.

In this section, we shall show that if B(x) is an Azumaya A-algebra in which
b and n are units, then A(x) is a splitting ring for B(x) such that A(x) is a chain
of Galois extensions of degree 2 (that is, A(x) > A(xz) > ... 2 A(xn) = A, such
that A(xi) is Galois over A(xZi)).

THEOREM 4.1. Let A be a commutative ring with 1, x™ = b in A, and ax = xa for
each a in A. If b and n are units in A with n a power of 2 (-2m for some m), then
A(x) is a chain of Galois extensions of degree 2.

PROOF. We define a mapping q: A(x)*A(x) by a(x) = -x and
u(Zaixi) = Zai(a(x))i for 1 = 0,1,...,n-1, Then it is straightforward to check
that a is an automorphism of A(x) of order 2 such that (A(x))® = A(xz). Since
n (=20 = 2°2nh1) and b (= < = (xz)zm-l) are units in A, 2 and x2 are units in
A(x?). Now we claim that A(x) is Galois over A(xz) with a Galois group {1,a}.

-1

2 -1
In fact, let ay (2x7) “x, a, 2 -, b1 x and b2 1. Then we have albl+a2b2

and ala(b1)+a2a(b2) = 0. Thus A(x) is Galois over A(xz) of degree 2. Similarly,

1

we can show that A(x2) is Galois over A(xé) with a Galois group {1,B8} with
B(xz) = ~x2 of order 2. Therefore, an induction argument concludes the existence
of a chain of Galois extensions of degree 2.

For the class of free ring extensions B(x) of degree n as given in [1], Sec-
tion 2 such that c and (l-ci) are units in A where ¢ =1 and i = 1,2,...,n-1, we
have:

THEOREM 4.2. Let A be a commutative ring with 1, x* = b which is a unit in A,
and ax = xa for each a in A. If there is an c in A such that n and (l-ci) are units
in A for 1 = 1,...,n-1 with "= 1, then A(x) is Galois over A.

PROOF. We define a mapping a: A(x)-A(x) by a(x) = cx and G(Zaixi) = Zai(cx)i.
Then one can check that (A(x))® = A and that a is an automorphism of A(x) of order
n (for 1--ci are units in A for 1 = 1,2,...,n-1). Moreover, since (l-c) is a unit
in A, (x~a(x)) = x-cx = (1-c)x is also a unit (for x is also a unit). Therefore,

n-1

A(x) is Galois over A with a Galois group {1, ;...a }([7]1, Proposition 1.2, p. 80).
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As given in Theorem 3.3, if B is Galois over A, B(x) is an Azumaya A-algebra.
We are going to show the existence of a splitting ring for the Azumaya A-algebra
B(x).

THEOREM 4.3. Let B(x) be an Azumaya A-algebra with b and n as units in A. Then
A(x) is a splitting ring for B(x). Moreover, if n is a power of 2, the splitting
ring A(x) is a chain of Galois extensions of degree 2, and if c and (l-ci) are

units in A where M= 1, then A(x) is Galois over A.

PROOF. Since b and n are units in A, the element u = (nb)-l( g;éxiﬂx“-i) sat-
isfies the equations: wua = au for each a in A(x) and (nb)-l(inxn-‘) = 1. Hence

A(x) is a separable A-algebra. Moreover, one can show directly that A(x) is a max-
imal subcommutative ring of B(x) by showing that the commutant of A(x) in B(x) is
A(x). Thus A(x) is a splitting ring for B(x) ([7],Theorem 5.5, p. 64). The other
results of the theorem are consequences of Theorems 4.1 and 4.2.

Theorem 4.1 is a generalization of Theorem 4.2 in [4] for quadratic free ring
extensions, while Theorem 4.3 proves the existence of a splitting ring for B(x),

other than B when B is commutative ([2], Proposition 1.1 and [5], Theorem 3.2).
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