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ABSTRACT. Nagahara and Kishimoto [i] studied free ring extensions B(x) of degree n

n
for some integer n over a ring B with i, where x b, cx xp(c) for all c and

n-Isome b in B (p automorphism of B), and {i, x x is a basis. Parimala

and Sridharan [2], and the author investigated a class of free ring extensions

called generalized quaternlon algebras in which b -I and p is of order 2. The

purpose of the present paper is to generalize a characterization of a generalized

quaternion algebra to a free ring extension of degree n in terms of the Azumaya

algebra. Also, it is shown that a one-to-one correspondence between the set of

invariant ideals of B under p and the set of ideals of B(x) leads to a relation

of the Galois extension B over an invariant subring under to the center of B.
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I. INTRODUCTION.

Kishimoto [3], and Nagahara and Kishimoto [i] studied free ring extensions of
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degree 2 and n for an integer n > 2: (I) B(x) is a free ring extension over a

2
ring B with i with a basis {i, x} such that x xa + b for some a and b in B, and

cx x0(c) for each c in B, where p is a ring automorphism of B of order 2. (2)

B(x), a free ring extension of degree n > 2 is similarly defined with a basis

n-i
x
n{i, x, x }, and b for some b in B and cx xp(c) for each c in B,

where 0 is of order n. Some special free ring extensions called generalized

quaternion algebras were investigated by Parimala and Sridharan [2] and the author

Szeto ([4] [5]). One of their results is a characterization of the Galois

extension of B over a subring ([2], Proposition 1.1): Let B(x) be a generalized

quaternion algebra (x
2

-I) over a cummutative ring B with 2 a unit in B. Then

B is Galois over A (={a in B/0(a) a for an automorphism 0 of order 2}) if and

only if BAB(X) is a matrix algebra of order 2. The above characterization was

generalized to a free ring extension of degree n, B(x) with x
n -I ([4], Theorems

3.4 and 3.5}. Te purpose of the present paper Is to continue the above general-

ization to a free ring extension. Also, we shall show that there is a one-to-one

correspondence between the set of invariant ideals of B under O and the set of

ideals of B(x). This correspondence will lead to a relation of the Galois extension

B over the invariant subring A under 0 to the center Z of B over A.

2. PRELIMINARIES.

Throughout, we assume that B is a ring (not necessarily cummutative) with i,

p an automorphism of B of order n for some positive integer n, A {a in B/0(a) a},

n-l}and B(x) a free ring extension over B with a basis {i, x, x such that

x b and ax x0(a) for some b and all a in B (hence o(b) b ([i], p. 20)).

Let T be a ring containing a subring R with i. Then T is called a separable

extension over R if there exist elements (ui, v
i

/ i i, m for some integer

m} such that a (uivl) (luivi)a for all a in T where @ is over R and .uivi 1

([6], [7]). Such an element luivi is called a separable idempotent for T. If

R is in the center of T, the separable extension T is called a separable R-algebra.

In particular, if R is the center of T, the separable R-algebra T is called an

Azumaya R-a!geb.ra (16], [7]). A commutative ring extension S of R is called a
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splitting ri for the Azumaya R-algebra T if ST HOms(P,P for a progenerator

S-module P ([6], [7]). The ring extension T over R is called a Galois extension

with a finite automorphism group G (Galois group) if (I) R {a in T / u(a) a

for all u in G}, and (2) there exist elements {ui, v
i

in T / i I,..., m for

some integer m} such that (i) .uivi i, and (2) .uiu(vi) 0 for each u the

identity of G ([7], [8]).

3. A GENERAL PARIMALA-SRIDHARAN THEOREM.

In this section, we shall generalize the Parimala-Sridharan [2] theorem to

a free ring extension B(x) of degree n for an integer n such that x
n

b and

ax xp(a) for some b and all a in B where p is an automorphism of B of order n.

We note that if B(x) is separable over B then b is a unit ([i], Proposition 2.4).

The converse holds if n is also a unit:

LEMMA 3.1. If n and b are units, then B(x) is a separable extension over B.

n
PROOF. Since b is in A ([I], p. 20) and s-ince p the Identity, it is

straightforward to verify that the element u b-i n-i (i=ox.n-iixn-i) satisfies

the equations: au ua for all a in B(x), and b
-I

n
-I (xixn-i) i, where @ is

over B.

We remark here that there are separable extensions with n (-- 2) not a unit

([4], Theorem 4.2). With the same proof as given for Proposition 1.2 in [7] we

have a characterization for Galois extensions of non-commutative rings:

LEMMI 3.2. Let B be a ring extension of A with a finite automorphism group

G such that A B
G (={a in B / u(a) a for each in G}). Then B is Galois over

A if and only if the left Ideal generated by {a-u(a) / for a in B} B for any

the identity of G.

THEOREM 3.3. Let n and b be units in B. If B is Galois over A which is con-

n-i
tained in the center, Z of B with a Galois group {i, 0, .,0 } of order n,

n
then the free ring extension B(x) of degree n is an Azumaya A-algebra, where x b

and cx xp(c) for each c in B.

PROOF. By Lemma 3.1, B(x) is separable over B. Since B is Galois over A,

B is separable over A. Hence B(x) is separable over A ([4], the proof of Theorem 3.4).
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n-i
So, lt suffices to show that the center of B(x) is A. Let u alx be in thei--O

n-i
center. Then xu ux. Noting that {l,x ,x is a basis for B(x) over B, we

have that a
i
are in A. Also, au ua for all a in B, so ai(a-pi(a)) 0 for each

i O. Hence the central elements a
i
are in the left annihilators of the left ideal

generated by {a-pi(a) / a n B} for i # O. By hypothesis, B is Galols over A, so

a_ 0 for each i # 0 by Lemma 3.2. Thus u a in A. Clearly, A is in the cen-
o

ter of B(x). Therefore, A the center of B(x).

By the Parimla-Sridharan theorem ([3], Proposition i.I), let B(x) be a gen-

eralized quaternion algebra (x2 =-i) over a commutative ring B. Then, B is Galois

over A (= {a in B / (a) a for an automorphism 0 of order 2}) if and only if

BHAB(X) is a matrix algebra of order 2 over B. Hence, Theorem 3.3 generalizes the

necessity of the Parlmala-Sridharan theorem. For the sufficiency, we first

give a one-to-one correspondence between the sets of ideals of B, of B(x), of A,

and the center Z of B. An ideal I of B is called a G-ideal if (I) I. Since

n-I
p(Z) Z, a G-ideal J of Z is similarly defined, where G i,0,...,0 }.

THEOREM 3.4. Let B(x) be an Azumaya A-algebra. Then there exists a one-to-

one correspondence between (i) the set of G-ideals of B, (2) the set of ideals of

B(x), and (3) the set of ideals of A.

PROOF. At first, we want to give a structure of a G-ideal I of B. Since

-iI, xlB(x> c 0 (1)B(x) IB(x). Hence IB(x) is an ideal of B(x). By hy-

pothesls, B(x) is an Azumaya A-algebra, so IB(x) I B(x) where I IB(x) n A
o o
n-i

([7], Corollary 3.7, p. 54). Noting that {l,x,...,x } is a basis for B(x) over

B, we have I I B and I I n A. Next, it is easy to see that J B is a G-ideal
o o o

of B for any ideal J of A. Thus the set of G-ideals of B are in one-to-one corre-
o

spondence with the set of ideals of A from the above representation I B of a G-
o

ideal I of B. By hypothesis again, B(x) is an Azumaya A-algebra, so the set of

ideals of B(x) and the set of ideals of A are in one-to-one correspondence under

IoB(X)++l. for an ideal I of A. Thus the theorem is proved.
o o

COROLLARY 3.5. Let n and b be units in B. Suppose B is Galols over A which

is contained in Z. Then there exists a one-to-one correspondence between the set

of G-ideals of Z and the set of ideals of B(x).
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PROOF. Since B is Galols over A, B is a separable A-algebra. Hence B is

Azumaya over its center Z ([7], Theorem 3.8, p. 55). Thus the set of G-ideals of

B and the set of G-ideals of Z are in one-to-one correspondence; and so Theorem 3.4

implies the corollary.

Now we show a generalization of the sufficiency of the Parimala-Srldharan

theorem. The set {a in B / p(a) a} is denoted by Bp. Let G’ be an automorphlsm

m-i n-igroup, {i, , } obtained from G (= {i , }) by taking m as the minimal

integer such that 0m the identity on Z. We denote the ideal generated by

{a-oi(a) / a in Z} by I
i

for i l,...,m-l. It is easy to see that each I
i

is a

G-ideal such that Ira_1 c Ira_2 c c II. We shall show that the chain of li’s
characterizes the Galols extension of Z over A. That is:

THEOREM 3.6. If B(x) is an Azumaya A-algebra such that I
1 12 Ira_l,

then Z is Galois over A with a Galols group G’.

PROOF. In case Z A the theorem is trivial. Let Z # A. Then m # 0.

Clearly, A BG Z G’. Now we assume Z is not Galols over A. Then the

ideal I
1

of Z is not Z ([7], Proposition 1.2, p. 80) since I
1 12 Ira_1 by

hypothesis. Since I
1

is a G-ideal, I
1

IZ for some ideal I of A by Theorem 3.4.

Hence B(x)/llB(X
_
A/.IAB( is an Azumaya A/l-algegra ([7], Proposition i.ii, p.

46). But () in B(x)/llB(X for each a in Z, so R ’-- . This implies

that Z is contained in the center A/I of the Azumaya A/l-algebra A/IQAB(X). This

is impossible since Z is not contained in A. Thus Z is Galois over A.

COROLLARY 3.7. By keeping the notations of Theorem 3.6, if B is Galois over

n-iA with a Galols group G (= {l,p,...,o }) such that I
1 12 Ira_l, then Z

is Galois over A with a Galols group G’, where b and n are units in B.

PROOF. Theorem 3.3 implies that B(x) is an Azumaya A-algebra, so the corollary

is a consequence of Theorem 3.6.

As given in Theorem 3.6, let B(x) be an Azumaya A-algebra. If B is commutative

B Z. Now assume B is not Galois over A. Then there is an I
i

for some i l,...,m-I

such that I
i

# Z. One can show as given in Theorem 3.6 that A/IIQAB(x is an Azu-

maya algebra such that x
i

is in the center A/Ii. Thus we have a contradfctlon.

This proves that B is Galols over A. So, Theorem 3.6 generalizes Theorems 3.4 and
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and 3.5 in 4].

4. SPLITTING RINGS.

In this section, we shall show that if B(x) is an Azumaya A-algebra in which

b and n are units, then A(x) is a splitting ring for B(x) such that A(x) is a chain

of Galois extensions of degree 2 (that is, A(x) A(x2) . A(xn) A, such

that A(xi) is Galois over A(x21)).
THEOREM 4.1. Let A be a commutative ring with I, xn b in A, and ax xa for

each a in A. If b and n are units in A with n a power of 2 (-2m for some m), then

A(x) is a chain of Galols extensions of degree 2.

PROOF. We define a mapping =: A(x)/A(x) by e(x) -x and

a(alxl)" lai(e(x))i for i 0,i, n-l. Then it is straightforward to check

that s is an automorphism of A(x) of order 2 such that (A(x)) A(x2). Since
m-i 2n (= 2m 2.2m-l) and b (= x

n (x2) 2 are units in A, 2 and x are units in

A(x2). Now we claim that A(x) is Galols over A(x2) with a Galols group {I,}.

In fact, let a.] (2x2)-ix, a
2

2-1, b I x and b
2

I. Then we have albl+a2b2 i

and al(bl)+a2(b2) 0. Thus A(x) is Galois over A(x2) of degree 2. Similarly,

we can show that A(x2) is Galois over A(x4) with a Galois group {1,8} with

(x2 2
8 =-x of order 2. Therefore, an induction argument concludes the existence

of a chain of Galois extensions of degree 2.

For the class of free ring extensions B(x) of degree n as given in [i], Sec-

i) ntlon 2 such that c and (l-c are units in A where c i and i 1,2,...,n-l, we

have:

THEOREM 4.2. Let A be a commutative ring with i, x
n

b which is a unit in A,

and ax xa for each a in A. If there is an c in A such that n and (l-ci) are units

in A for i l,...,n-i with c
n

i, then A(x) is Galols over A.

PROOF. We define a mapping : A(x)A(x) by u(x) cx and s([.alxl [ai(cx) i.
Then one can check that (A(x)) A and that s is an automorphlsm of A(x) of order

i
n (for l-c are units in A for i 1,2,...,n-l). Moreover, since (l-c) is a unit

in A, (x-u(x)) x-cx (l-c)x is also a unit (for x is also a unit). Therefore,

A(x) is Galois over A with a Galois group {i, ,... }([7], Proposition 1.2, p. 80).
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As given in Theorem 3.3, if B is Galois over A, B(x) is an Azumaya A-algebra.

We are going to show the existence of a splitting ring for the Azumaya A-algebra

B(x).

THEOREM 4.3. Let B(x) be an Azumaya A-algebra with b and n as units in A. Then

A(x) is a splitting ring for B(x). Moreover, if n is a power of 2, the splitting

ring A(x) is a chain of Galois extensions of degree 2, and if c and (l-ci) are

n
units in A where c i, then A(x) is Galols over A.

-l.rn-I i^ n-i)PROOF. Since b and n are units in A, the element u (nb) ILl=0x ux sat-

isfies the equations: ua au for each a in A(x) and (nb)-l(xlxn-i) i. Hence

A(x) is a separable A-algebra. Moreover, one can show directly that A(x) is a max-

imal subcommutative ring of B(x) by showing that the commutant of A(x) in B(x) is

A(x). Thus A(x) is a splitting ring for B(x) ([7],Theorem 5.5, p. 64). The other

results of the theorem are consequences of Theorems 4.1 and 4.2.

Theorem 4.1 is a generalization of Theorem 4.2 in [4] for quadratic free ring

extensions, while Theorem 4.3 proves the existence of a splitting ring for B(x),

other than B when B is commutative ([2], Proposition i.i and [5], Theorem 3.2).
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