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ABSTRACT. A subgroup of the linear translation complement of a translation plane is

geometrically irreducible if it has no invariant lines or subplanes. A similar defi-

nition can be given for "geometrically primitive". If a group is geometrically pri-

mitive and solvable then it is fixed point free or metacyclic or has a normal subgroup

2a+b a
of order w where w divides the dimension of the vector space. Similar conditions

hold for solvable normal subgroups of geometrically primitive nonsolvable groups.

When the dimension of the vector space is small there are restrictions on the group

which might possibly be in the translation complement. We look at the situation for

certain orders of the plane.
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i. INTRODUCTION.

dA translation plane of order q with kernel GF(q) F can be represented as

follows: Let V be a vector space of dimension 2d over F. A spread defined on V is a

class of d-dimensional subspaces (called the components of the spread) such that each

nonzero element of V belongs to exactly one component. The points of are the ele-

ments of V, the lines of are the components of the spread and their translates. The

group of nonsingular semi-linear transformations of V which permute the components is

called the translation complement of . The subgroup consisting of linear transform-
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atlons is the linear translation complement.

We are interested in finding information as to which abstract groups can act

as subgroups of the linear translation complement; what the nature of the action is

and also what the nature of the plane is. The action is fully as important as the

(abstract) group.

A particularly simple kind of action is for the group to be flxed-polnt-free

(f.p.f.). A linear group is fixed point free if no nontrlvlal element fixes any

nonzero vector. The translations and a fixed-polnt-free group generate a Frobenlus

group with the f.p.f, group as Frobenius complement. A normal subgroup G
1
of a

non-f.p.f, group is a minimal non-f.p.f, group with respect to G if it is non-f.p.f.

but every normal subgroup of G properly contained in G
1

is f.p.f. It can happen

that a minimal non-f.p.f, group with respect to G is also a minimal normal non-

solvable subgroup. This situation has been analyzed in previous papers and some of

the results are given in (2.4) below.

In (2.6) we show that if G is solvable then, subject to certain irreducibility

requirements at least one of the following holds: (I) G is f.p.f. (2) G is meta-

2a+b
cyclic (3) G has a normal subgroup W which is a w-group of order w for some a

and b and w
a

divides the dimension 2d of the vector space. The nature of G and its

action is much easier to analyze when case (3) does not occur. A similar situation

occurs in the nonsolvable case. See (2.3) and (2.4).

In (2.7), (2.8) and (2.9) we develop some circumstances under which case (3)

cannot occur. In Section 3 we develop some lower bounds on the value of d if the

plane is to admit SL(2,u) or PSL(2,u) for a given u relatively prime to q. (Recall

that the plane is defined on a vector space of dimension 2d over GF(q)). This is

a slight sharpening of some standard results. (See Harris and Hering [2].) How-

ever this sharper result is useful in looking at particular cases.

We confess to a poor background in group representation theory. All of this

is representation theory in some sense and may be implied by results in classical

representation theory. We would be pleased if some expert could show us how to get

our results from standard representation theory if this could be done in substan-

.tially less space than we have used to get them directly by fairly elementary means.
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What we seem to be ending up with are results which show that when d and the

characteristic of GF(q) are suitably restricted, the number of groups to be con-

sidered is reasonably small.

In Section 4 we illustrate how this works for some specific values of d with q

odd or even.

DEFINITION I.i. If G is a group of nonsingular transformations, V(G) denotes

the vector subspace consisting of all vectors fixed by G. If is an element of G,

V(o) means the same as V(<o>).

DEFINITION 1.2. The prime u is a q-primltive divisor of qd-I if u divides

d-Iq but u does not divide qa-I for 0 < a < d

NOTATION 1.3. If G is a group, Z(G) denotes the center of G. Whenever we are

considering subgroups of a given group G, C(H) will denote the centralizer of H

in G. If G
O

is another subgroup of G, the centralizer of H in G
O will be denoted

by GO N (H).

We shall make repeated use of the fact that the Sylow subgroups of a

Frobenius complement (and hence of an f.p.f, group) are cyclic or generalized

quaternion.

This research was supported by the National Science Foundation.

2 SOLVABLE NON-F.P F. GROUPS

DEFINITION 2.1. Let G be a subgroup of the linear translation complement of

a translation plane w. Then G will be said to be geometrically irreducible either

if G is irreducible as a group of linear transformations or if none of the

invariant vector subspaces is a proper subplane of or is a component of the

spread defining w. If G is geometrically irreducible, G will be said to be geo-

metrically primitive if (as a vector space) cannot be written as a direct sum of

proper subspaces which are subplanes or components of the spread and are permted

by G.

REMARK. Recall that if is a nontrlvlal member of the linear translation

complement then the subspace V(O) pointwise fixed by is either a proper subplane

or is a (not necessarily proper) subspace of a component. A subgroup G of the

linear translation complement is not geometrically irreducible if G has a normal
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subgroup H# 1 such that V(H) is nontrivial.

LEMMA 2.2. If G is geometrically primitive then G every normal elementary

abelian subgroup is cyclic of prime order.

PROOF. Suppose that G> W where W is an elementary abelian w-group of order

a
w where a > i and w is prime. Then W cannot be fixed point free and for some

element W, V(o) is nontrivial. Furthermore V() is invariant under W.

Let V be a minimal invariant G-space. By Clifford’s Theorem V--VI... V
k

where VI, V2, etc. are homogeneous W-spaces--i.e. the minimal W-spaces in V
i

are

isomorphic as W-modules. If an element o of W is non-f.p.f, on Vi, it fixes a

minimal W-space pointwise. Hence every minimal W-space in V. is pointwise fixed

by o so V
i

itself is pointwise fixed by . Clifford’s Theorem also says that the

V. are subspaces of imprimitivity for G.

beLet W
1
be the subgroup of W which fixes VI pointwise. Let VI, V2,..., V

k

distinct images of V(WI) under G. Note that V(WI) need not be a subspace of V.

* * .. -- and that V is non-Suppose that V + V + +Vk_ I VI V
2 Vk_ I

* * etc. are invariant under W and each is pointwise fixedtrivial. Note that VI, V2,

* V.* is nontrivial for someby some conjugate of WI. It follows that V
k l

-IwI%I -IwI%2i--I, 2, h-l. Thus there are two conjugates, say %1 and %2 both

fixing Vk*N V*i pointwise. Hence there is some homogeneous W-space Vj which is

-IwI% IWIpointwise fixed by %1 I and % %2" But the subgroup of W which fixes V.
3

-IwI%1
IW

1
* * Itpointwlse is some conjugate of WI. Hence %1 % %2 so that V
k

V
i-

follows that is a direct sum of V(WI) and its distinct images under G contrary

to the condition that G is geometrically primitive.

THEOREM 2.3. Let G be a nonsolvable subgroup of the linear translation

complement of a finite translation plane . Let G
O be a minimal nonsolvable normal

subgroup of G and let H be a maximal normal subgroup of G included in G
O but not

equal to GO Then either H is fixed point free or GO contains a subgroup W which

is minimal nonfixed point free with respect to G. Furthermore W is a w-group for

some prime w and W/W0 is elementary abelian, where W
0

is the maximal normal sub-

group of G included in W but not equal to W.
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THEOREM 2.4. In (2.3) if H is fixed point free then H--Z(G0). If H is not

fixed point free so that W exists, then either W is elementary abelian or

2a aIW/W01 w where w divides the dimension of the vector space on which is

defined and the group of automorphlsms of W/W
0 induced by conjugation with respect

to G is isomorphic to a subgroup of Sp(2a,w).

The above two theorems are contained in Lemma (2.2) and (2.8) of our paper on

planes of odd order and dimension [9] and Lemma (2.5) of our paper on planes of

even order in which the dimension has one odd factor [I0]. The key to (2.4) above

is Huppert’s Satz 13.7 Chapter III in his book [5].

We now return to the solvable case

LEMMA 2.5. Let G be a solvable group of linear transformations acting on a

vector space V of dimension 2d over GF(q). Then at least one of the following

holds: (I) G is fixed point free; (2) G is metacycllc; (3) G has a normal sub-

group W with the properties of W in (2.3) and W
0

is cyclic; (4) G has a normal sub-

group Q isomorphic to the quaternion group of order 8 and if G
1

is a minimal

non-f.p.f, group with respect to G then either the non-f.p.f, elements in G
1
have

order 2 or 3 or G
I centralizes Q.

PROOF. Suppose that G is not fixed point free. Let be a maximal normal

subgroup of G. If is not cyclic then is not f.p.f, and contains a sub-

group W which is minimal non-f.p.f, group with respect to G.

By Corollary (3.3) of [8] if W is a solvable minimal non-f.p.f, group with

respect to G and W
0

is the maximal normal subgroup #W of G included in G, then

W/W0 is elementary abelian.

Hence we have conclusion (3) if is not cyclic. Suppose that is cyclic.

If is its own centralizer in G, then G/ is cyclic. In this case we have

conclusion (2) since the outer automorphism group of a cyclic group is cyclic.

If / is not its own centralizer in G, then the centralizer of / in G contains

a minimal normal nonabellan subgroup W* of G. The conditions of Huppert’s

Hilfsatz I are satisfied [4] and the conclusions include the following:

aI. W* has prime power order, say w

2. W* rood its center is elementary abelian.
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3. If w> 2 and W then w= I.

4. If w= 2 and W then 4= I.

Thus if w 2, we may take W*= W and we have our conclusion (3). We also have

conclusion (3) if w=2 and W* is not f.p.f. Otherwise w= 2, W* is f.p.f, so W* is

generalized quaternion. But if W* has exponent 4 this implies that W* is quaternion

of order 8. Let us change our notation and let Q be this normal quaternion group.

Suppose that G has a minimal non-f.p.f, group G
1
which does not centralize Q.

Since G
1
must be generated by its non-f.p.f, elements, it follows that G

1
contains

an element which induces a nontrivial automorphism on Q by conjugation. But the

outer automorphism group of Q is isomorphic to S
4

so its order must divide 24. This

gives us case (4) of the Lemma.

dTHEOREM 2.6. Let be a translation plane of order q and kernel GF(q). Let

G be a solvable subgroup of the linear translation complement which is geometrically

irreducible and geometrically primitive. Then at least one of the following holds:

(I) G is fixed point free. (2) G is metacyclic. (3) G has a normal subgroup W

such that W is a w-group for some prime w. W mod its center W
0

is elementary

2a aabelian of order w for some a >i where w divides 2d. The group induced by G

on W/W0 by conjugation is isomorphic to a subgroup of SP(2a,w).

PROOF. Apply (2.2), (2.5) and Hilfsatz II from Huppert’s paper [4] or Satz

13.7 Chapter III in his book [5]. Note that both cases (3) and (4) of (2.5) come

under case (3) of the present theorem.

The situation at this stage can briefly be described by saying that if G is

geometrically irreducible and geometrically primitive then every solvable normal

subgroup is fixed point free and if G has a minimal nonsolvale normal subgroup G
O

then G
O modulo its center is a direct product of isomorphic simple groups.

Note that GO is its own derived group and (see Huppert [5] Hilfsatz 5.23.3)

in this case Z(G0) is a subgroup of the Schur multiplier of G0/Z(Go). The

situation where GO contains a (noncyclic) metacycllc normal subgroup of G does not

arise when G is nonsolvable due to the fact that GO is a minimal normal subgroup

of G.

We can now drop the irreducibility considerations and consider the cases where
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Go/Z(G0) is simple. As we shall see the possibility frequently arises in trans-

lation planes that G0/Z(GO) is PSL(2,u) for some u. For u # 9, the order of the

Schur multiplier divides 2 so that GO turns out to be SL(2,u) or PSL(2,u) in these

situations.

We might remark that we have not made much use of the geometry and that

primitivity as a linear group is at least as strong a condition as geometrical

primitivi ty.

In any case it is desirable to have conditions in which every solvable normal

subgroup is fixed point free.

We find it convenient to use the expression "geometrically primitive" instead

of the more complete "geometrically irreducible and geometrically primitive".

d
COROLLARY 2.7. Let be a translation plane of order q with kernel GF(q).

Suppose that both q and d are powers of the same prime u. Let G be a solvable

geometrically primitive subgroup of the linear translation complement. Then no

minimal non-f.p.f, group with respect to G is a w-group for a prime w.

PROOF. At characteristic u a u-group has a nontrivlal subspace which it fixes

2a a
pointwise. If W exists with W/Z(W) of order w where w divides 2d it follows in

this case that w= u. Hence W cannot exist. The possibility that W might be

elementary abelian is excluded by the geometrical primltivity.

If qd-I has a q-primitive divisor u (see Definition (1.2)) and if the stabl-

lizer of some component of the spread is transitive on nonzero points, then the

order of the translation complement is divisible by u. Kallaher and the author

made much use of this idea [6].

LEMMA 2.8. Let G be a geometrically primitive subgroup of the linear trans-

d
latlon complement of a translation plane of order q with kernel GF(q). Let d* be

the largest prime power factor of 2d and let d be the largest prime power factor

of d. Suppose that u is a prime factor of IGI such that u >+ I if q is even or

1 , d*u ,> (d + I) and u# if q is odd. Suppose that G has a normal subgroup W as in

(2.3) and (2.4) or (2.5). Then all elements of order u in G centralize W.

PROOF. The order of Sp(2a,w) is
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2
(w2a-l)(w2a-2-I) (w2- l)wa

2a a
Under the hypotheses if IW/W01 w where w divides 2d, the prime u does not

divide ISp(2a,w) l. Thus if W exists and is some element of order u in G and

% 6 W we must have that -1%@ l for some v in W
0

since must induce the trivial

automorphism of W/W0. Then I o-u%u lu so that 1 since (u,w) 1 and is

a w-element.

THEOREM 2.9. Suppose that the prime u is a factor of IGI which satisfies

the hypotheses of (2.8) plus the extra condition that either u is a q-primitlve

d
divisor of q -I or u is a q-primitive divisor of qt-I where d 2t and q is even.

Let G be a solvable geometrically primitive subgroup of the linear translation

complement. Then no solvable minimal non-f.p.f, group with respect to G is a

w-group for a prime w.

PROOF. Suppose that W does exist with the usual properties. By Huppert,

Satz 13.7 [5] W is a central product WlW2. .W
k
where W./Z(W)I is elementary

2
abelian of order w If W then w Z(W)=W0. Hence if V() is nontrivlal,

then II =w since W
0 must be fixed point free. Furthermore the conjugate of

with respect to an element of W is either or the product of with an element of

W0. It follows that ( has exactly w conjugates with respect to W and that z as a

vector space is the direct sum of w copies of V(o) so that dim V(@) 2d / w. If q

is even, w# 2. If dim V(o)= e, then the prime u does not divide qe-I if u is a

q-primitive divisor of qd-I or if qt-I with q even.

By (2.8) each element of order u in G must leave V() invarlant; in the

present situation such an element must fix V(O) pointwlse.

Thus if W exists the normal subgroup generated by the u-elements fixes some

nontrivial subspace pointwise and G cannot be geometrically irreducible. Hence W

cannot exist if G is geometrically irreducible and geometrically primitive.

REMARK. A prime q-primitive divisor of qd-I is not ncessarily larger than d

or even larger than the largest prime power factor of d. However this is "usually"

the case at least for small q and d. Note that 26-1 has no 2-primltive divisors

but 23-1 has a primitive divisor larger than 6.
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3. BOUNDS ON THE DIMENSION.

It is probably well known from classical representation theory that the

1
dimension of the smallest complex representation of PSL(2,u) is (u-l). For a

group acting on a vector space over a finite field with characteristic prime to u

this is part of the results of Harris and Hering [2]even if the representation

cannot be obtained from a complex representation. This section represents a

slight sharpening of this part of the results of Harris and Hering [2] for the case

where the group is part of the translation complement of a finite translation plane.

Furthermore our methods are relatively elementary. We consider this to be an asset.

The group W in this section does not play the same role as the group W of Section 2.

LEMMA 3. i. Let W be a group of prime order w acting on a vector space of

finite dimension d. Suppose that (I) does not fix polntwise any proper subspace

of V. (2) There exists a nonsingular linear transformation on V which

normalizes and induces by conjugation a regular automorphlsm group of order h
0

on

W (i.e centralizes no nontrivial element of W for i < 0 < h
0
but h

i
central-

izes W for i=h0).
Then h

0
divides d.

PROOF. We shall show that permutes the eigenvalues of , where W =< c >.

Let K be an extension of GF(q) which contains all of the eigenvalues of c.

We can embed V in a vector space V* of the same dimension as V but where V* is a

vector space over K. Let 8 be an element of K which is an elgenvalue of . Then

the eigenspace (in V*) belonging to 8 is identical with V((IS-1), the subspace of

V* pointwise fixed by -I. Now -I a for some integer a and

-I (08-I) c[as-I -I
so V(C8 ) v(ca8-I) if Cab-- I, v(ca8-I) =V(c8-b) and is the

eigenspace to @b The two eigenspaces are disjoint unless they are identical

They are identical only if J8-1= c@-b so that 8= b. But then (Ia-- (J which cannot

happen since )t induces an automorphism of order 1/2(w-l). In a simiiar fashion, )t

pemtes eigenvalues #1 in cycles of length hO. Now V* is a direct sum of eigen-

spaces of c and )t permutes these eigenspaces in orbits of length h0--1/2(w-1).
Hence h

0
divides dim V.
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THEOREM 3.2. Let G be a subgroup of the linear translation complement of a

d
translation plane with kernel GF(q), order q Let w be an odd prime relatively

prime to q. Suppose that G has a normal subgroup W which is elementary abelian

of order w and that G induces a cyclic automorphism group on W by conjugation so

that the nontrlvial elements of W fall into exactly conjugate classes each of

i a w
a

length -(w-1). Then either w
a

4d+ 1 or -<_ 2d+ 1. If V(W) is trivial, then

w -I divides 4d.

PROOF. Note that G is acting on a vector space of dimension 2d over GF(q).

Consider the case where a > I. There may or may not be some nontrivial subspace

V(W) pointwise fixed by W. If V(W) is nontrivlal, W has some complementary space

on which it acts faithfully.

Let V be a vector space on which W acts faithfully. (The following is

suggested by the proof of Lemma 1.3 in Harris and Herlng [2] .)

There exists an element h such that h induces a group of automorphisms on W

of order 1/2(wa-l). Let G
I <h, W> and let <he 1/2,W>, where e (wa-l).

Since h
e

centralizes W, is abelian. Then Clifford’s theorem implies that V is

a direct sum VI... V
k

of homogeneous -spaces. If a > 1 some element o of W is

not f.p.f, on VI. But W is abelian so o fixes a minimal -space pointwise and,

since V
1

is a homogeneous W-space, VI is pointwise fixed by o. An f.p.f.

elementary abelian w-group must have order w so W must induce a group of order w

a-I
on Wl--i.e. WI is pointwise fixed by a group of order w Thus V

1
V
k
a-i

respectively are pointwise fixed by conjugate subgroups of W having order w

a-I
The number of subgroups of rder w in a conjugate class is the same as the

number of subgroups of order w in a conjugate class and is either (wa-l)(w-l)-I or

i a I
(w -l)(w-l)- depending on whether a subgroup of order w has 2 or 1 conjugate

classes of nontrivial elements.

i
By the previous Lenmm h

0 (w-l) or w-i divides dim V
1

Hence

1 a
V0 V

1
...V

h
is invariant under G and dim VI...VhI is a multiple of -(w -1).

Furthermore if V
0
VI. ..VhV’ then the argument can be repeated to show that

I a AllV’ contains a direct sum VI...Vh
where (w -i) divides dim [VI

V
h
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of this holds for a--1 again by the previous Lemma. By induction, is the direct

1 a
sum of V0 and a subspace whose dimension is divisible by (w -I). If V

0
is trivial,

I a
then (w-i) divides 2d or 4d-0 mod wa-l. In this case either 4d--wa-I or

2d>__ wa-l.

Now suppose that V
0 is not trivial. Here we make our first use of the fact

that G is acting on a translation plane. If is any component such that V
0

is nontrivial, then is invarlant under W. Furthermore V
0

is a subplane iff at

least three components are invariant under Wo With the proper basis, W can be

(x,y) from a vector space of dimension d; the sets of points for which x= 0, y= 0,

y x respectively are three invariant components. In this case if V
i

intersects an

i a
invariant component it intersects all of them. Hence h--(w-I) is less than d.

If W has precisely one invariant component we again conclude h < d. (This case

doesn’t really happen) If W has two invariant components and <%> leaves both

invariant we again conclude h < d. If W has two invariant components in the same

orbit under % then V
0 must intersect both of them nontrlvially and we are back to

the case where V0 is a subplane.

COROLLARY 3.3. Let G be a subgroup of the translation complement for a trans-

dlatlon plane of order q with-kernel GF(q). Suppose that G has some normal sub-

group H such that G/H PSL(2,u for some odd prime u, (IHI, u) 1 and (u,q)-- I.

aThen either ua--4d+l or u =< 2d+l. If ua-I does not divide 4d then a Sylow

u-group in G fixes a nontrivial subplane pointwise.

PROOF. The group G of the previous theorem exists. If ua-I does not divide

4d, the Sylow u-group has at least one fixed component. There is more than one

fixed component since (u,q)= i and each fixed component must contain fixed points

1 adifferent from 0 if (u-i) does not divide 2d.

4THEOREM 3.4. Let be a translation plane of order q and with kernel GF(q)

where q is even. Suppose that the translation complement G of contains no afflne

elations. Then the Sylow 2 groups of G hve nilpotency class at most 2.
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PROOF. Let S be a Sylow 2-group. Since the number of components of the

spread is odd, S must fix some component and act faithfully on . Furthermore

each involution in S is a Baer involution and hence fixes a 2-space on pointwise.

Furthermore if is any nontrivial element, we must have that V() has dimension

at most 2.

Let us restrict ourselves to the representation of S on by 4 x 4 matrices.

We can choose a basis so that the elements of S are represented by upper triangular

matrices with l’s on the diagonal Furthermore we may assume that some involution

in the center is represented by a matrix of the form

1 c c I c
2

i
I c3

c
4

0 i 0

0 0 I

But if is an involution we must have [(I c) (I 0)](c I c2)= 10 0)0 I + 0 1 c3
c
4

0 0

Hence either c3=c4
0 or c=0. In the former case the points (0,I,0,0)(0,0,I,0)

and (0,0,0,I) are all fixed contrary to the condition that the dimension of V()

is equal to 2 Hence c=O In abbreviated form o (oI C where the capital
/

letters are 2 by 2 matrices. By a further change of basis we can take ;
0

Now the condition that ( E)I commute with is that A= B. We may take

(I a) The reader may verify that the commutator of Il I
C )12 andA

0 i CI I

12 has the form
D
1

I

where E DII DI2 + DII CII C12 DII + CII DII DI2 CII + CII C12 (using the fact

that Cll Dll are commuting involutions).

If we set DII ( ) and CII (01 ) it turns out that theelement/T=\
in the left hand corner of E is 0. The commutator of with respect

to a general element then has the form ( )where K has the formCll\u] 0f121
But then ( KI)fixes the vectors (0,i,0,0)(0,0,i,0)and (0,0,0,I). It

follows that K= 0 and thus the commutator of three elements is the identity.
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4. APPLICATIONS.

As before G is understood to be a subgroup of the linear translation comple-

d
ment of a translation plane with kernel GF(q) and order q We shall assume that

G is geometrically primitive and GO will denote a minimal nonsolvable normal sub-

group of G if G is nonsolvable.

As we have pointed out in several previous papers when q and d are both odd

and G is nonsolvable GO contains a normal subgroup H of G such that G0/H is

PSL(2,u) for some odd u or G0/H is A7.

Consider the case q--d=5. Applying (2.7), (2.3), (2.4) and the remarks

preceding (2.7) we can say that H is a Schur multiplier for GO By (4.8) of

[I0], each odd prime factor of G must divide 5(55+ 1)(55-1)(54-1)(53-1) so A
7

does not apply. Hence GO= SL(2,u) for some odd u. If (u,5) 1 then by (3.2)

either u=4.5+I =21 or u -< II. Since 21 is composite we cannot have u= 21. Thus

u= 11,9, or a power of 5. If we put in the condition that G has a subgroup fixing

some component E and transitive on nonzero vectors of E, then IGI is divisible by

the prime factor 71 of 55-1. (This condition arises naturally in the investigation

of rank three planes.) We leave it to the reader to verify that in this case the

52only possibility is u so that the plane is Desargueslan.

A similar argument works for q 3, d--5 if we again assume G has a subgroup

fixing and transitive on some component E of the spread. These are special cases;

our results appear to be the most useful in narrowing down the possibilities for

groups in particular situations.

Consider the case where q is even and d 4. If G contains affine elations

(shears) we can apply Hering’s results on the groups generated by elations [3],

so assume that G has no affine elations. By (3.4) the Sylow 2-groups have nil-

potency class at most 2.

According to Walter [Ii] the nonsolvable simple groups with abelian Sylow

2
s

2-groups are in the following list: PSL(2,u), u > 3 u 3 or 5 rood 8 or u

J(ll), Ree type (Rl(u)).
According to Gilman and Gorenstein [i], the simple groups with Sylow 2-groups
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of nilpotency class 2 are PSL(2,u) u-7, 9 rood 16, A?, Sz(2n), U3(23), PSL(3,2n),
PSp(4,2n) n_-> 2.

We note that PSL(3,2)= PSL(2,7) acts on a plane of order 16 but is geometrically

reducible [7].

To illustrate the methods of this paper, we restrict ourselves to the cases

where Go/H=PSL(2,u) u-3 or 5 rood 8 or u-7 or 9 rood 16 or G is solvable. Note

that if q is even and G is geometrically primitive then G can have no normal

2-groups. By (2.6) and (2.7) every solvable normal subgroup will be fixed point

free or metacyclic.

A fixed point free group on a vector space over a field of characteristic 2

must have odd order. Except possibly if u= 9 the Schur multiplier for

PSL(2,u)(u odd) has order 2. In the present context we actually have that H of

(2.3) must be trivial so that G0=PSL(2,u). By (3.2) u-4" 4+I 17 or

u=<4- 2+ I= 9. But 17- 1 rood 16 so u_-<9. Since PSL(2,5) PSL(2,4) the only

cases left are PSL(2,9) and PSL(2,7).
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