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ABSTRACT. This paper presents some theoretical results concerning an extrapo-

lation method, based on a completely consistent linear stationary iterative

method of first degree, for the numerical solution of the linear system Au=b.

The main purpose of the paper is to find ranges for the extrapolation parame-

ter, such that the extrapolation method converges independently of whether

the original iterative method is convergent or not.

KEY WORDS AND PHRASES. near stationary iterative method of first degree,

Etrapolation method.
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i. INTRODUCTION.

For the numerical solution of the linear system of equations

Au b, (I.i)

where A is a given nonsingular real nn matrix, b is a given real vector and

u is the solution-vector, which is to be determined, various iterative me-

thods can be applied. Among them, we consider a completely consistent linear

stationary iterative method of first degree (see e.g. [i])defin.-,d by

(m+) (m)
u -Gu +k, m- 0,1,2,... (1.2)

where G is some real matrix, which is called the iteration matrix of the me-

thod (1.2), k is some real vector and u
()

is an arbitrary initial approxi-
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marion to the solution u of (i.i). Moreover, we have

k (I-G)A-Ib and det(l-G) 0 (1.3)

In order to accelerate the rates of convergence of methods like (1.2), vari-

ous procedures and modifications are used. One of them is the extrapolation

method based on (1.2). This is defined by

(m+1) Gu(m) )u(m)u -m( +k) +(l-m m- 0,1,2,... (1.4)

where is a real parameter ( 0) called the extrapolation parameter. We no-

te here, that the idea of using an extrapolation parameter, 0, appeared

long ago in the stationary Richardson method [2], based on (i.i), defined by

(m+l) (m) (m) )u(m)u -u +(Au b) (I+A -b m- 0,i,2,...

which follows from (1.4) as a special case if G- I+A.

For re=l, method (1.4) coincides with (1.2). The iteration matrix of method

(1.4) is

G -mG+(l-m)I (1.5)

where I is the identity matrix of order n. Thus, (1.4) takes the form

(m+1) (m)
u -Gmu +k" m=0,1,2,... (1.6)

where k’=mk. Since

and

(I-GIn)A- Ib m(I-G)A- b -mk k"

det(l-Gm) det(m(l-G)) mndet(l-G) 0

it follows that the extrapolation method is completely consistent with the sy-

stem (I.i).

The problem which now arises is how the parameter must be chosen in order

to have p(G )< p(G) with @(G )<i where (G), (G are the spectral radii

of the matrices G and G respectively.

As is known, the problem of finding a theoretical optimum value for m, say

opt’ such that

o(G -rain p(G )<_ o(G) and o(G < 1
opt opt

has been solved in some special cases, but not in the general case. It is
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easy to show (see e.g. [3]) that, if the matrix G has real eigenvalues j
such that

me_j <_M < 1 (1.7)

then p(G )<i iff 0<m< 2/(l-Bm) and the spectral radius p(G is minimized

if we take -opt- 2/(2-(Bm+M)). Moreover, we have

opt
(UM-Um)/(2-(M+m)) < i

Therefore, in this case, the optimum extrapolation method is always conver-

gent, although o(G) is not necessarily less than one. It must be noted that

(1.7) holds if G is the matrix B of the Jacobi method, corresponding to a po-

sitive definite matrix A of the original system. Then, the optimum JOR me-

thod [i] converges. We also note, that if G has real eigenvalues such that

l<m_<j <--M’ then o(Gm) < i iff 2/(i-M
< m < O. Moreover, mopt 2/(2-(m+UM))

and p(Gm (M-m)/(m+BM-2) < i.
opt

In a recent work [4], a geometrical approach of the general case with o(G)<i

is discussed, where the construction of a capturing circle of the spectrum of

G is required.

In the next section we study extrapolation method (1.6) in order to find ran-

ges for m in which convergence is achieved in the general case.

2. CONVERGENCE THEORY.

First we observe that, if for some norm of G we have fIG If< i, then for

< 1 we obtain

that is, the extrapolation method converges. We assume now that,

i8.

Vj =0je
] j =i(i)n (2.1)

are the eigenvalues of G, where O!OmOj <--PM o(G), i= (-i Ijl oj and

m=min. 0j, M=max. Oj In the sequel we omit the subscript j in Oj, @j sin-

ce no confusion can be made; that is, from now on ,0 are used in place of

j respectively. Evidently, the eigenvalues of Gm are given by

lj =ovj+l-m j l(1)n (2.2)



756 A. YEYIOS

Therefore, for the spectral radius of G we have that

p G
j J +l-m <max{Im I+II-I}- ll-l+Imlmaxljl-

(2.3)

We examine now the convergence of method (1.6) in relation to that of method

(1.2). We discuss four basic cases, the first two of which are rather trivi-

al.

0 for all j. Then ljl < 1 iff 0 <m< 2.Case I: p O. Here we assume that la

It is obvious that the optimum valu of m, which minimizes p(Gm), is opt:l,
since p(G) 0.

Case II- 0- i. Now we have that {j{-i for all j. Then, lj[ < iff

2m(m-l)(l-cos8) <0. If cosel, that is, if . i for all j, then for O<m<l
]

we have p(Gm)< i. If j i for some j, then method (1.6) does not converge.

I for all j, we seek the optimum value of m6(0,1)
In the case where j

which minimizes p(G0). Suppose that

-l_<x <_x <_x2
< i

where x- cos8 Re Z.. It is apparent that
3

ma.xlk j 12 i_2(i-)(i-x2)
]

(2.4)

and

min{maxl I} (min[l-2(l-)(l-x2)])1/2
j J

By letting f(m) l-2m(l-m)(l-x) we easily get that minf(m) f(1/2) (l+x2)/2,

which implies that

rain p(G p(G P(G1/2) ((l+maxRe.)/2)1/2.
opt j 3

Remark If max Re B.--i (which is valid if j -i for all j), then we have

j 3

p(%.) o.

Case I- 0 < Om<_O <_0M: p(G) < I.

In this case ljl <i iff

2 2+(p 1-2pcose) + 2(pcos8-1) < 0 (2,5)

Assuming first that m< 0, (2.5) is equivalent to

m(p+l-2pcos@) +2(pcos@-l) > 0 (2.6)
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Sirce p2+l-2pcose_>p2+l-2p (l-p) 2 >0 and 1-pcos@ >_l-p >0, from (2.6) we ob-

tain > 2(1-pcosS)/(p2+l-2pcos@) > 0, which contradicts to the hypothesis. If

now m>0, then (2.5) is equivalent to

m(p2+l-2pcos@)+2(pcos@-l) < 0 (2.7)

which gives 0<< 2(l-pcosS)/(p2+l-2pcos@) -g(p,@) for all pj, or equivalen-

tly

0 < m < min g(p,8)
p.
]

and the following theorem has been proved.

Theorem 2.1 If the method (1.2) converges (p(G)< i), then the method (1.6)

converges (p(G) < i) iff 0<m<min{2(l-pcos@)/(p2+l-2pcos@)}.

Remark It can be proved that g(p,) > i for p < 1.

We now show that ming(p,@)- 2/(l+p(G)) for all p,@ such that

0 < pm_<p_<pM p(G) < 1 and 0 < e < 2

We note that .g/(cos@)- p(l-p2)/(p2+l-2pcos@) >0 from which it follows that

min g(p,@) g(p,cose- -1) g(p,e- ) 2/(l+p)
cose

and consequently

min g(p,9) min(2/(l+p)) 2/(l+PM) 2/(l+p(G))
p,e p

Since, 2/(l+p(G)) <_ming(p,8) (the equality holds if for some we have

Pj

pj=-p(G)), then by virtue of Theorem 2.1 the validity of the following two

statements is easily established.

Corollary 2.2 If p(G) < I, then p(G) < I for all 0 << 2/(l+p(G)) <2.

Corollary 2.3 If the matrix G has at least one negative eigenvalue p, such

that IP[-p(G) <I, then p(G <I iff 0<<2/(l+p(G)).

Proof: This follows from Theorem 2.1 since, in this case, we have

min g(p,e) -min g(p,e) g(p(G),) 2/(l+p(G)

pj p,O

Theorem 2.4 If p(G) < i then p(G < i for all 0 << 2(l-Xm)/(p2(G)+l-2xm m

where x -minx, x-Reg. pcos@
m ]

Proof- According to Theorem 2.1, it is sufficient to show that
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2/(l+p(G)) < 2(l-x )/(p2(G)+l-2x <ming(p,8) (2 8)m m
j

Evidently, we have -l<x <x< 1 and -p(G)-<x <p(G). Hence, p2(G)+l-2xm-- m-- m

>_p2(G)+l-2p(G)- (l-p(G)) 2 >0. Thus, the first inequality in (2.8) is equiva-

lent to

(p(G)+Xm)(P(G)-l)_<0 (2.9)

Since l-p(G)> 0 and p(G)+x >0, we conclude that (2.9) holds. To prove the
m--

second inequality in (2.8) it is sufficient to show that 2(l-x )/(p2(G)+l-
m

-2x <2(l-pcosS)/(p2+l-2pcosS) for all p_. :pe
i@

m ]
or equivalently, since

pcose =x, that

p2(l-x )-p2(G)(l-x)+x -x < O. (2.10)
m m

The inequality (2.10) can be written as follows

(1-x)(1-p(()) !(1-x )(1-p)
m

The inequality above holds because of the relationships 0 < l-x < l-x and
m

0 <l-p2(G)_<l-p 2

Corollary 2.5 If the iteration matrix G of the method (1.2), has eigenvalu-

es pj such that, Repj_> 0 for all j and p(G) <i, then p(Gm) < i for all

0 <o<2/(l+p2(G)).

Case IV- 0 <_pm <- p <-pM and Pm < i< PM P (G)

It is also assumed, in this case, that pj i, j- l(1)n. Consider now only

those eigenvalues pj of G with l<p<_pM-P(G). Then ljl <i iff

-(p2+l-2pcose)+20(pcose-1) < O. (2.11)

We distinguish two cases according to whether m is less or greater than zero.

i. Let m<0. Since p2+l-2pcos8 >_(l-p) 2 >0, by virtue of (2.11) we have

m> 2(l-pcose)/(p2+l-2pcos@). In order that negative values for m exist, we

must have l-pcos8 < 0; Namely, the real parts of the eigenvalues, which we con-

sider, must be > i. Since, according to Cases I, T, and IE for the other el-

genvalues of G with 0iPm<_p < i, there is no convergence for w < 0, we conclu-

de that m can not take negative values.

2. Now let m >0. Then (2.11) gives m<2(l-pcosS)/(p2+l-2pcosS). In order

that positive values for m exist, we must have pcos@ < i or Re pj < i for tho-
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se eigenvalues j with p > i. Considering now all the eigenvalues of G and ta-

king into account the results of Cases I, II, and IE, together with the ob-

servation that 2(l-pcosO)/(02+l-2cos@)_<l for 0>_i, the theorem below fol-

IOWS.

Theorem 2.6 If o(G) > i and Rej < i, l(1)n, then o(Gm) < i iff 0<m

<ming(o,8) where g(o,@) -2(l-ocosS)/(oZ+l-20cos@).
j

Theorem 2.7 If o(G) >i and Rej <_0, then o(Gm)<l for all 0<m<2/(l+o2(G)).

Proof" We prove that

2/(l+p2(G))<2(l-pcos@)/(p2+l-2pcose) for all p.. (2.12)
]

For this, because of the remark in Theorem 2.1, it is sufficient to show

(2.12) for p >i and pcosS<0. We observe that (2.12) is equivalent to

P2-1 <_ (1-pcosO) (pZ (G)-I)

which holds because of 0 < p2-1<p2(G)-i and l<l-pcosS.

The following Theorem is an immediate result of Case IV.

Theorem 2.8 If G has eigenvalues j
statements are valid.

with > i, j l(1)n, then the following

i. If ReBj>I, j-l(1)n, then O(Gm)<l iff maxg(0,0)<m<0.

2. If Re<!, j :l(1)n, then o(G )<i iff 0<m<ming(p,8)

where g(p,@) 2(l-pcos@)/(p2+l-2pcos@).

with ReCorollary 2.9 If G has eigenvalues 3
for all 2/(l-o(G))<m<0.

> i, l(1)n, then (G < I

Proof" The conclusion follows, in view of the Theorem 2.8, since we have

2(l-ocosS)/(o2+l-2ocos@) <_2/(I-o(G)) for all Bj; that is,

max g(o,@) i2/(l-0(G)).

j
If the method (1.2) is the Jacobi method (J) with iteration matrix B,

then (1.6) is the extrapolation Jacobi method (JOR or EJ) with iteration ma-

trix B (see e.g. [i]). For these methods, by applying the previous results,

we have.

Theorem 2.10 If all the eigenvalues of B are real with moduli > i, then the

JOR method does not converge.
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Proof" Since tr(B)- 0, the matrix B must have positive and negative eigenva-

lues with moduli > i. The proof now follows by theorem 2.8.

Theorem 2.11 If the Jacobi method (J) converges (0(B)< i), then 0(B )< i

for all 0<(0< 2/(I+0(B)) < 2.

The previous Theorem is more general than Theorem I.i [i, p. 107]. We also

note that some of the results of this section are given in [5] in a different

way.

In the sequel, we consider the case where the matrix G of the method (1.2)

has eigenvalues U. with 0 0(G)< i and we seek to find values for (0 such that
]

p(G <_p(G).

For this, we require .ljl<..ljl to hold for all j, where %. are the eigenva-

lues of G(0, given by (2.2). Because of (2.1), we conclude that l%jl_< IPjl iff

F((0) 2 (p2+l-2pcos@)+2(0(0cos8-1 )+1-02 _< 0. 2.13

Since, p2+l-2pcosS>(l-p)2 > 0 and the discriminant of F((0) given by

D-402(0c0s8)2>0, it follows that (2.13) holds iff min((01,(02)i(0imax((01,(02),

where (01 ,(02 are the two roots of F((0) given by

(01 i, (02 (1-P2)/(p2+1-2pcse)" (2.14)

We note that (0 > I if 02< Ocos@, while (02 < i if p2> pcos@.

Thus, the following Theorem has been proved.

Theorem 2.12 If G has eigenvalues p. with 0 0(G)< i, then the following
]

statements are valid.

i. If 02< Re pj for all j, then p(G(0)_< p(G) for all

l<(0<min{(l-p2)/(p2+l-2P,ep.)}.

2. If 02> Re pj for all j, then 0(G(0)<_0(G) for all

max{ 1-p 2 )/(p2+l-2Re pj )} <--(0 <_ 1
p.

Remark The restriction 02 < Re pj implies that p < I and thus p(G) < i, while

this is not true if 02> Rep..
]

Letting j-x+iy, where x-Rej and y-Imj we have 02 -x2+y2. Then the

following lemma, which can be easily shown, gives ranges for x and y such

that either 02< X or 02> X and p < I.
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Lemma 2.13

i. 02 <X

iff IYl < 1/2 and (l-k)/2 <x< (l+k)/2, where k- (i-4y2) 1/2.
2. 02>x and 0 < 1 iff anyone of the following statements holds

i) -i < x < 0 and IYl < (l-x2) 1/2

ii) -i<y<-1/2 or 1/2 <_y< i and O<x< (l-y2)1/2
iii) IYl <1/2 and (l+k)/2<x<(l-y2)1/2

or O<x< (l-k)/2, where k-(l-4y2) 1/2.
As an application of Theorem 2.12, we consider the following examples.

i. Let the matrix G have eigenvalues

satisfying 02 < Repj j 1,2,3,4.

Therefore

o(G <o(G) for all 6 (i min{(l-o2)/(o2+l-2ReB_.
J

It must be noted that 0(G)=0.7120, while

)}) (1,2.4483).

min 0(G) 0(GI.92 0.6.
m6(1,2.4483)

2. Suppose that G has eigenvalues

2 I 3. i 3.
]J 3 ]J2 -’P- 1 ]J3 2 4

1

satisfying p2 >Repj p < i, j 1,2,3.

Hence, we have

for all m 6 (max{(l-p2)/(o+l-2Re jUj
)},i)- (0.2, 1).

Moreover, we find that p(G)=0.9014 and

rain p(Gm) p(G2/45 =0.4472.
me(o.2,1)

3. CONCLUDING REMARKS

From the previous convergence results of section 2, it is clear, that

in order to be possible to find ranges for such that 0(Gin)< i, either

Relaj < 1 or Repj > 1 must hold for all the eigenvalues p
j,

j- l(1)n of G.

For practical purposand in a case which is not a special one, the choice
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of m is made computationally, since, the range for m for which p(G )< i
opt

is known.

Finally, we note that the Accelerated Overrelaxation (AOR) method stu-

died in [6], which in turn was an extension of the corresponding one intro-

duced by Hadjidimos [7], is an extrapolation of an obvious extension of the

well known Successive Overrelaxation method (SOR) (see e.g. [8], [I] ). Also,

in a paper of Niethammer [9], an extrapolation of the SOR is studied. Thus,

all the theory developed in this paper could be applied to the extrapolation

method based on SOR in order to obtain better rates of convergence.
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