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ABSTRACT. In the present paper we want to give a common structure

theory of left action, group operations, R-modules and automata of

different types defined over various kinds of carrier objects: sets,

graphs, presheaves, sheaves, topological spaces (in particular:

compactly generated Hausdorff spaces). The first section gives an

axiomatic approach to algebraic structures relative to a base

category B, slightly more powerful than that of monadic (tripleable)

functors. In section 2 we generalize Lawveres functorial semantics

to many-sorted algebras over cartesian closed categories.

In section 3 we treat the structures mentioned in the beginning as

many-sorted algebras with fixed "scalar" or "input" object and show

that they still have an algebraic (or monadic) forgetful functor

(theorem 3.3) and hence the general theory of algebraic structures

applies. These structures were usually treated as one-sorted in the

Lawvere-setting, the action being expressed by a family of unary

operations indexed over the scalars. But this approach cannot, as

the one developed here, describe continuity of the action (more
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general: the action to be a B-morphism), which is essential for the

structures mentioned above, e.g. modules for a sheaf of rings or

topological automata. Finally we discuss consequences of

theorem 3.3 for the structure theory of various types of automata.

The particular case of algebras with fixed "natural numbers object"

has been studied by the authors in [23].

KEY WORDS AND PHRASES. Algebras, actions, automata, algebraic

functor.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. O8AO5, 18C15, 68DOSp

INTRODUCTION (ALGEBRAIC FUNCTORS)

The following paper is directed to specialists. Customary short-

hand theorems, and arguments are freely used.

Triple theory (cf. [], [2]VI, [3]3) showed that the notion of

"algebraic structures" should be viewed as a relative notion:

structures of a given species are algebraic over some other category,

and this is best described in terms of the forgetful functor

from some category K of "algebras" into a "base" cate-

gory B. We say U is tripleable or monadic (cf. references above).

We will use only the axiomatic properties of monadic functors.

].| PAR-CRITERION (cf. [2]VI.7) U has a left adjoint F, and

U creates absolute coequalizers, i.e. coequalizers preserved by any

functor.

We will use as our basic notion the following slightly stronger one:

.2 DEFINITION AND CHARACTERIZATION. A functor U K B is

algebraic, if

(i) U has a left adjoint F

(ii)

(iii)

U creates (inverse) limits

U creates coequalizers of U-kernel pairs (K-pairs mapped by U

into kernel pairs), i.e. quotients by congruences can be
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calculated downstairs.

For B finitely complete, algebraic functors are just monadic ones

which satisfy (iii). This follows from the characterization of

monadic functors in [4]3.3.

U is of finite rank if (iv) U creates filtered colimits.

1.3 REMARK. For B Sets, "monadic" and "algebraic" are

the same, again by [4], 3.3, since in Sets coequalizers are

retractions. As we will see in section 2, "usual" algebraic struc-

tures, i.e. those with operations of finite arity (in particular

L a w v e r e type algebras) have algebraic forgetful functors of

finite rank, if B has enough properties of Sets.

We prefer "algebraic" to "monadic" because of the following quite

important structure theorems and because generation of congruences,

isomorphism theorems, Z a s s e n h a u s lemma, J o r d a n-

H 8 1 d e r theorem hold for K with algebraic U K B into B

complete well-powered and cocomplete, see [5], [6].

LIFTING THEOREM. Let U K B be algebraic. If B is

complete, well-powered,and cocomplete, then so is K. If B has

kernel pairs and a coequalizer-mono factorization, then so has K.

PROOF. Since U creates limits, completeness of B implies

completeness of K.

For a B-monomorphism B m UK there is at most one K-(mono)mor-

m’
phism K’ =K such that Um’ m: If such an m’ exists, then the

left column in

KP(U(gKoFm)) U(KP(gKoFm))

I UFmUFB - UFUK

UK =B - UK
m

is exact, i.e. a

kernel pair- co-

equalizer diagram.

UgK’ is uniquel determined by B since m is mono, and, being a

retraction, UgK’ is a coequalizer of its kernel pair.Since U creates
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coequalizers of U-kernel pairs, especially of KP(gKFm), there is

a unique FB K’ mapped by U into UFB UgK’.B, namely

FB
gK’

w" K’ So m admits at most one K’ m’
K with Um’ m,

hence B well-powered implies K well powered.

Cocompleteness: Since U creates coequalizers of (U-)kernel pairs,

and B has coequalizers of kernel pairs, K has them too.

A general theorem (cf. [7] 3.53) then gives coequalizers of arbi-

trary pairs A _K in K: take the coequalizer of the intersection
g

over the set (K well-powered) of all kernel pairs on K through

which factors, this intersection being a kernel pair.
g

Coproducts in K may now be constructed as follows (cf. the well-

known "free product"-construction for groups):

FUK. i K.KP K i i

F in
i lji

R ] F( UKi) -F(_UKi) /I I

F in.
R is the kernel pair generated by the pairs KP(Ki)
By construction of R, there is a unique j. making the right hand

rectangle commute. The Ji make F(IUKi into a coproduct of the
I R

K., verification being a simple diagram chase. This shows that K
i

is cocomplete. By replacing by other colimits, the same argu-

ments show: For B complete and well-powered, K is eocomplete at

least as far as B is.

f
Factorization: For K K’ let UK q D> m

UK

be the coequalizer-mono factorization of Uf.

q coequ(KP(Uf)) coequ(U(KPf)), since U creates kernel pairs.

By U algebraic, there exists a coequalizer K i of KPf over q

and hence a factorization K C m-- K over that of Uf. m is mono,
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since monos are characterized by the pair of identities to be

kernel pair, and U creates kernel pairs, q.e.d.

There is no assumption on K in the theorem. L i n t o n shows

in [8], corollary 2 cocompleteness of K, if U is monadic and K

already has coequalizers of reflexive pairs.

1.5 PRESENTATION OF ALGEBRAS. For B complete and well-

powered with coequalizers, U K---- B algebraic, any B E B ("set" of

generators) together with G----UFB ("relations") presents a
P2

K-object, i.e. the coequalizer FB/G of PI’P2 (in K relative U,

cf. [8]). Each KEK has a presentation, namely

UKP(EK)EE FUK gK K.

PROOF. The intersection FB of all kernel pairs on FB
2

P!
through which G--------UFB factors (in B) exists (K well-powered and

P2
complete by ;.4) and is a (U-)kernel pair [7], 3.5). Hence, by U

monadic, FB FB/G =: FB/G ey.:qts and has the desired prop-

erty. Second part of the assertion: U K is a retraction

(for NUK), hence coequalizer of its kernel pair UKP(gK), so gK is

a coequalizer relative U of UKP(gK), because U is faithful, q.e.d.

1.6 COMPOSITION THEOREM. If in K B C U and V are

algebraic [of finite rank] then so is their composition V U

PROOF’. VU is right adjoint as composition of right adjoints,

and creates limits, because U and V do (create them in two steps).

Now let be a VU-kernel pair and

VUK C coequ(VUPo o
VUp (Up ,Up being a V-kernel pair

(trivial), V algebraic implies unique existence of UK q in B

Up ). Since V creates limits,with V q, and coequ(UPo,
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especially kernel pairs, (Up ,Up is a kernel pair in B of ,
o

so (po,pl) is a U-kernel pair. By U algebraic, there exists a

unique K C in K such that U (hence VU =q), and

q coequ(p o,p| ). Uniqueness of with respect to VU q is

verified stepwise. If U and V create filtered colimits, then VU

does: create them in two steps. So VU is of finite rank. q.e.d.

Composition of monadic functors is not monadic in general. The

2
forgetful functors Cat Graph and Graph Sets are monadic,

their composition is not, since images of functors need not to be

(sub)categories.

TRIANGLE THEOREM. If K U B.V_ C, K has coequal-

izers, and W VU, then if V and W are monadic, so is U.

If C is complete, cocomplete and well-powered and if V and W are

algebraic [of finite rank], then so is U.

PROOF. U right adjoint follows from [9] theorem (adjoint

triangles)

UK B is a derivable triangle, since K and therefore

K has the needed coequalizers
C

FVe
and FV "- id

B coequ(FVFV
FV FV)

by V being monadic.

By P a r ’s monadicity criterion we need to show (for the first

part of our assertion) that U creates absolute coequalizers.

But since V preserves absolute coequalizers (as such, any functor

does), U creates them.

Second assertion: It is easy to verify that a functor (e.g. V,W)

into a category having limits,colimits of a given kind which creates

these limits, colimits respectively, preserves them. This proves

the second part of the assertion" U creates "things" because
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V preserves them, W creates them, and U maps them into the

original things, because V creates (uniqueness). U right adjoint

holds by the first assertion since the lifting theorem provides

all coequalizers in K via W. q.e.d.

Each time a (full) subcategory is equationally defined, we will

use the following theorem for proving the inclusion functor to be

algebraic.

1.8 BIRKHOFF-INCLUSION THEOREM. For complete, well-

powered K having coequalizers and a coequalizer-mono factorization,

a full inclusion I L ----> K is reflective with coequalizers as

reflections (regular epi-reflective), if L is closed under products

and (mono-)subobjects. It is algebraic, if, in addition, L is

closed under coequalizers of kernel pairs, i.e. it is a

B i r k h o f f subcategory..

PROOF. Apply the non-numerated "Satz" on page 96 of [10]

taking M class of all K-monos, class of all regular epis

(coequalizers). K is E-cowellpowered, since it is well-powered

(bijective correspondence between kernel pairs and (regular)

quotients) and satisfies the diagonal-condition for E,M since

every regular epi is coequalizer of its kernel pair.

Explicit construc. of the reflector:

Given KEK, take out of a representative family (one representant
f.

for each iso-class) of regular quotients the family K I

Li
of those quotients h L.EL. Then tile regular epi-mono facto-

I

(fi)
rization K Lo gives the regular epi reflection

RK

KK RK.

The second assertion is obvious by definition of "algebraic".
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2. MANY SORTED ALGEBRAS

This section generalizes two principal results of [11] to many-

sorted (heterogeneous) algebras over cartesian closed categories:

"theories are algebras" (theorem 2.3) and "models of algebraic

theories have algebraic forgetful functors of finite rank"

(theorem 2.6).

The case of Sets as base category has been treated in [12], [13],

and [14]. A further generalization to the case of (closed)

monoidal categories is given in [15] (one-sorted algebras) and

in the unpublished [16] (many-sorted algebras).

Ix I2.1 DEFINITIONS: For a set I, YESets is called an

I-sorted algebraic type or scheme of operators (cf. 12], 13]).

I may be seen as a directed graph with node set I*; YEGraphl.
which has only arrows with codomain in I (coarity I).

A l-model in a category B with and given binary product

is a graph-morphism M: l--- B which preserves products:

I*A i I...i MA Mi1...Mi (...(MiMi2)..)xMin n n

0 (C) +
Example: I {R,A}, l: R = RR

A AxA

(where we wrote RxA instead of RAffI*) RxA

is the scheme of left modules (over varying rings). Modules are

l-models satisfying the usual equations.
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A l-homomorphism f M M’ is a family

f (fi)i61
I6 Sets ((Mi), (M’i))

compatible with the operations. For each A i i

n
fi.

MA J=! M’A

Mi M’i
fi

This defines a category Mod(/,B) with forgetful functor

IU Mod(Y,B) B M (Mi)
i61

in Y

()

2.2 THEOREM:

I(i) U Mod(Y,B) B has a left adjoint, if B has and if

B- preserves coproducts (and hence distributes over

coproducts)

(ii) U Mod(l,B) B creates limits (B arbitrary)

(iii) U creates absolute coequalizers (B arbitrary)

(iv) U creates coequalizers of U-kernel pairs, if simulta-

neously preserves coequalizers of kernel pairs, in particular

if B is cartesian closed and regular epis (coequalizers) are

closed under composition.

(v) U creates filtered colimits, if B- preserves them (in

particular if B is cartesian closed).

The proof is a purely formal extension of that of theorem .4 in

15]. For B Sets, (i) and (iv) are proved in 12] and 13].

PROOF. For B =Sets, []2] and [13] prove (i) by construction

Iof (free) word algebras over given (Bi) 6 Sets By analysis of the

structure of these word algebras the following proof in the

general case is suggested.
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Clone of (composite) operations of

I*xiDefine Z E Sets Graph I* recursively as follows:

id.
arrows i

i
i are in Y (iEl).

For A i i i in I and A. J i. in Y
|’’" n J j

w(w w
(l_<j<_n) x A A .A.

n
i is in l

j<n

(and that is all).

For each A Mod(/,B) there is a unique extension A Z B

compatible with substitution, namely A ido id
i Bi

A W(w_.) Ao Aw., and each f A A’ in Mod(Y,B) is
j_<n J

compatible also with all composite operations w in I (proof by

induction).

I
Construction of FB for B (Bi)i I B_

W
Abbreviations: dom(A i) := A ("domain"),

W
cod(A i) := i ("codomain"), . {w : cod w i},

B B i ...i := x B i..
A n j<n

Then define the i-th carrier object FBi of FB by- injections Bdom w
FBi Bdom w

wEl.
i

How to define FB(A i l...i i) ?
n

in w
FBi.

Consider the following diagram:

x in wj
j<n

Bdom ,(w.) x Bdom w
j<n

FBio FB(A)
j_<n

FB-FBiin ’(Wl ’Wn

()

By distributivity of x with respect to coproducts, the rows above
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((wj) x -.
j<n

constitute a coproduct, hence the in U(wj)

induce a morphism FBW. This clearly defines FB Mod(l,B).

Front adjunction qB (in idi)i I
(Bi) (FBi).

Universal property of qB (Bi) FB:

For a homomorphic extension f FB A of

i i ---I in I consider the diagram

f B UA,

FBi
fi

Ai

w

in w Aw

B f i.
J

/in
BiN x A i.

idij=x(nB) ij

FB i f i.
J

(2)

The lower triangle commutes, since f extends f; the frame commutes,

since f is compatible with any w il’’’in----i in Y.

An induction on I shows the left triangle to commute. Hence fi

is necessarily induced out of the coproduct by the Aw o fi..
jn

This f extends f (take w=id.) and is a l-homomorphism as is shown by
i

using the "coproduct-row" and commutativity of (I), the commutative

upper rectangle in (2), and the recursive definition of A. This

proves (i).

(ii) is proved straight forward by using the universal property of

im in the i-th component.

For (iii) and (iv), consider a pair R==fM in Mod(l,B) which
g

gives rise to an absolute coequalizer diagram or a kernel pair

respectivelycoequalizer diagram UR UM C in IUg

(hence -case (iv)-- Ri Mi Ci is such a diagram).
gl
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-----i in Y, the upperThen, by hypothesis, for each A i! .i
n

row in

fA
qA q i.

R(A) .’. M(A) J---C(A) := C i.
gA

IIRW M Cw

fi qiRi -_ Mi = Ci
gl

is a coequalizer diagram, hence induces a unique C compatible

with q. So there exists a unique C E Mod(Y,B) over C such that

q M C is a homomorphism. A simple diagram chase shows q to be

a coequalizer of f and g in Mod(Y,B).

(v) is proved similarly using the fact that a binary functor

which preserves filtered colimits in each place, commutes with them,

see [5], 6.5.

Let us now turn to many-sorted algebraic theories and their models.

2.3 DEFINITIONS: An 1-sorted algebraic theory is a category

T with object set ITi I* (free monoid over I), given products

p
[A i! ..i "J----i.]. i

n j=! ,n’ and I terminal.

A morphism t :T ----T’ of such theories is a functor which is

identity on objects and preserves the given projections. This

defines a category Th I with obvious forgetful functor

V Thl---- Graphl,. For B with given finite product, a T-model in B

is a functor M T B which preserves the given finite products.

A T-homomorphism f: M M’ is a transformation compatible with ,
E BI((Mi), (Mi)) satisfying (I) in 2.!i.e. a family f (fi)i

for all A- i in T. This defines the category Funct (T,B) of

T-models in B with forgetful functor U Funct (T,B)----B I.

2.4 THEOREM: The forgetful functor V Thl----Graphl.
Sets is algebraic of finite rank (cf. ;.2).
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PROOF: 1-sorted theories are O-algebras in Sets for the

following l*xl*-sorted scheme of operators

@:
id

,(A,A), A E I* ("identities")

(A,B)(B,C)-----,(A,C), A,B,C E I* ("composition")

pr
[I (i ...in,ij)]j=l n’ n 61N,i, ji. 6 I ("projections")

(A’il)’’’(A’in) (" ,’i (A,il ..in )’ n 6IN, A 6 I*, i.j 6 I

("induced arrows")

T 6 Mod(@,Sets) is a theory, iff the following hold"

neutrality of id, associativity of o, prj (f f f"
n

(defining equation for induced arrows), (prlf Prnf) f

for f A il "’’in (uniqueness of the induced arrow) cf. [24i.

l*xl*
By theorem 2.2, Mod(@,Sets)-----*Sets is algebraic of finite rank

Th I
c Mod(@, Sets) is a full subcategory defined by equations,

hence (easy verification) closed under subobjects, products,

quotients, and filtered colimits. By lifting and B i r k h o f f

inclusion theorem, Th I -----Mod(@, Sets) is algebraic of finite rank,

hence by the composition theorem also

V l*xl*
Graph Th Mod(@, Sets) Sets Graphi..ThI I I

We draw now some conclusions from this theorem which will be needed

for the proof of the main theorem below.

2.5 EXTENSION OF MODELS AND PRESENTATION OF THEORIES.

(i) Each M Mod(l,B) extends uniquely to M Funct (FI,B) FI Th I

being the free theory generated by I E Graphl.. This defines

an isomorphism Mod(l,B) Funct (FI,B) of categories compatible

with the forgetful functors

l*xl*
(ii) Each s.pecies (I,G), l,G Graphi. Sets G _c Ixl,

presents the theory T FI/G, and Funct (T,B) is isomorphic
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(iii)

to Mod((Y,G),B) the full subcategory of Mod(Y,B) consisting of

those M B satisfying G, i.e. M FK B equalizes

G
_pr!

=FZ
Pr 2

Each T E Th

Y, G E Sets

has an @lebraic presentation (I,G), i.e.I
I*I

PROOF. (i): M admits a full image factorization

M M
l

o
TM______ with T

M Th I defined by TM(A,B (MA,MB) with

composition, identities, and projections inherited from B.

The Graphl.-morphism M extends uniquely to M :FI To o M

in Th I by the theorem M M is then the unique extensiono

of M. The statement now follows from the observation that homo-

morphisms f M M’ are just models in B BOl which followed

by the evaluations 2 B at 0 and give M and M’. This yields

a bijection between the Hom-sets, compatible with the forgetful

functors, hence functorial.

(ii) follows from 1.5 and FZ/G being a coequalizer of

pr Pr2 G-’-FK relative V; for the homomorphisms cf. proof of (i).

(iii) follows from the fact that each T Th
I is generated by its

arrows with codomain in I, since any arrow is induced by those.

2.6 THEOREM. For an 1-sorted algebraic theory T Th
I

[finitely presented] and [B an elementary topos with NNO or] B

a well-powered cartesian closed category with coequalizer-mono

factorization and coequalizers closed under composition, the care-

gory Funct (T,B) of T-models in B has an algebraic forgetful

functor U: Funct (T,B) B
I

of finite rank

PROOF. By 2.5, (ii) and (iii) it is sufficient to show that

Mod((Y,G),B) full > Mod(l,B) B I is algebraic of finite rank
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for Z,G E Sets G c FZ FZ. The second factor has this property

by theorem 2.2, [for B being an elementary topos with NNO the

existence of a left adjoint is guaranteed by

(u,v)theorem] Fulfillment of equations A

J o h n s t o n e’s

i in G by Z-models

is clearly stable under subobjects and products and also under

quotients and filtered colimits, since x simultaneously preserves

regular epis and commutes with filtered colimits. This implies the

theorem by Lifting theorem, Birkhoff-inclusion theorem and

composition theorem.

By the triangle-theorem we get immediately:

2.7 COROLLARY. For B as above and a morphism t T’-T in Th

the "algebraic" functor Funct (t,B): Funct (T,B) Funct (T’,B)x x x

is algebraic of finite rank.

2.8 EXAMPLES. The conditions for B are satisfied by Sets,

Sets (C small, "presheaves"), Grothendieck-topoi(full subcate-

gories of Sets of j-sheaves for a topology j on C),

-===e MxMGraph(= Sets ), GraphM (= Sets ), Cat (cf. 1613.5), CGHaus

(compactly generated Hausdorff spaces (cf. [18])), Tol(tolerance

spaces (cf. [17]:4.9,7)). An analysis of the proofs shows that the

theorem is still valid for countable T (i.e. generated by a count-

able Z) and the category of countable sets, since B x- still

preserves colimits although it has no right adjoint.

A long list of l-sorted algebraic theories (presented by operations

and equations) is given in [3] :3.

Examples for the many-sorted case:
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I. LEFT ACTIONS (called monoid automata in [17]: 5.6):

Z 1_ R RxR

RxA A

G monoid eeuations for R and RxRxA "xA.. RxA
(1 ,A) A

RxA * -models: Lact(B) (left actions in B (with varying scalar monoid R)).

MODULES: )- as in 2. G(unitary ring equations for R,

abelian group equations for A, and the above equations for *).

Similarly: R,S-bimodules and group operations for R a group.

3. AUTOMATA:

Medvedev-au toma t a

Mealy-automata

Moore-automata Y

IxS S

IxS S

IxS S 0 no equations.

2.9 REMARK: The conclusion in 2.6 remains valid for many

other categories, too, if we replace "algebraic" by "monadic".

Especially this holds for every category B with an INS-functor

V B Sets in the sense of [19] or equivalently B being a Top-

category in the sense of [20]. In this case U Mod(Y,B)---B

creates absolute coequalizers, and we have the following commutative

diagram of functors:

U IMod(Y,B) B

Mod(Y,Sets) U’ Sets

U’ has a left adjoint by 2.6 and Mod(Y,V) has a left adjoint, too

(take the "discrete structure" on every component of a model in

Sets yielding a model in B).
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IV is an INS-functor and has also a left adjoint ("discrete

structure"), hence by the triangle-theorem ([9]) U has a left

adjoint, too. It follows from the P a r - criterion that U is

monadic. This holds e.g. for B being the category of topological,

uniform, measurable, compactly generated, limit spaces (cf. 19] for

other examples.

Note that the induced functor Mod(Y,V): Mod(Y,B) Mod(Y,Sets) is

again an INS-functor. The initial object can be defined in each

component of the model, and it follows directly that this defines

a model in B. In the one-sorted case this is mentioned in [19].

Hence Mod(Y,B) is complete and cocomplete (cf. [19]: 1.6) which

will be used later (cf.3.4).

3. ALGEBRAS WITH ACTIONS

The examples at the end of section 2 become more interesting for

the applications, if the "scalar" or "input" components are fixed,

cf. [7] and the examples in 3.4 and 3.5. We show here that under

certain conditions (3. 3.2) fixing components still gives monadic

or algebraic forgetful functors.

3. ALGEBRAS WITH ACTIONS A theory with J-action (J E Sets)

is an I 0 J-sorted theory T having the following factorization

property:

Every T-arrow AB

factorization AB pr

A’ (A,A’ E J*, B I *) has a

Now let T] Thj be the full subcategory of T with object set J*

(Example: Tj theory of unitary rings) and R Mod(Tj,B)_ be a fixed

Tj-model over some base category _B with (given) finite products.

Then a T-model M with MiT R is called an R-model (for T).
J

Together with homomorphisms f (fi)i I j:M M’ with fj idMj
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for E J, these form a subcategory MOdR(T,B)_ of Mod(T,B)_ with

I
forgetful functor U

R MOdR(T,B)_ ----B_ Now we give a sufficient

condition for the factorization property, which is trivially satis-

fied in all o,r examples.

3.2 LEMMA: If T E Thi0 J
is generated by J-actions, i.e.

generated by arrows A -----i (i I 0 J) with A J* for i J, then

T has the factorization property of 3.1.

PROOF: By hypothesis the arrows of a generating graph

I Graph(ioj). of T have the factorization property. We have to

show that it is preserved under inducing morphisms into a product

and under composition. The former is trivial.

Now let

AxB

AB A’B’-----A"B" be in T with

A’ B pr prA’ AB A A and similarly for W’

Then

AB A’xB’ A"xB"

A A ’’"

i.e. the J-part of ’o again factorizes through AB pr
A. q.e.d.

3.3 THEOREM: Let B be a category with given finite products

such that for any T 6 Thi, I 6 Sets arbitrary, Mod(T,B)_ has co-

l
equalizers and U Mod(T,B) B is monadic or algebraic [of

finite rank] (See 2.6 for sufficient conditions for B).

I
Then UR MOdR(T,B)_ _B has the same property for any theory

T 6 Th I 0 J with J-action (see 3.1).

PROOF: Construction of a left adjoint F R
for U

R

We will construct FR---@ U
R

using F ---4 U Mod(T,B)--- B
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Fj --q Uj Mod(T

Let B (Bi)iEl

(Rj,Bi)iEl, jJ

J I
j,B) B and F

I UI Mod(TI,B B

be a given family of B-objects. For the family

there exists the free T-algebra F((Rj,Bi)iI,jj),
or F(Rj,Bi) for short.

We first prove the following

LEMMA: F(Rj,Bi) IT FjUjR.
J

PROOF: We show that F(Rj,Bi)Ij F(Rj,Bi)IT
J

solves the

universal problem corresponding to Uj for the object UjR (Rj)jtj.
Let R’ be a Tj-algebra and f (fj Rj R’j)jEj: UjR UjR’

a family of B-morphisms. Define an extension R’ Mod(T,B) of R’

uniquely by R’i (terminal object) for all i t I and

’ (AxB A) R’ (W) o pr for A J* where W is given by the

factorization property 3.1.

So by our assumptions there exists a unique T-homomorphism

f F(Rj,Bi) R’ such that diagram (1) commutes:

(1)

(fj,Bil)i1,.jEj ’i)i10j(Rj,Bi)il,jJ

rl Uf

UF(Rj ,Bi)

UR’

The lemma follows now from R’ R’ and by considering the J-
J

components of (I) (existence of an extension of (fj)jj)
and by the observation that any f F(Rj,Bi)ITj-----R’ in Mod(Tj,)

extends to an f F(Rj,Bi)----- R’ in Mod(T,B) (uniqueness of the

extension) q.e.d.
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Now let g be the back-adjunction for

UjR

Uj (FjUjR)

id
UjR

Fj Uj, i.e.

UjgR

UjR

and
Plp-
P2 FjUjR the kernel pair of R in Mod(Tj,B).

10J
Define the B -morphism pair (rl,r2) by

r

UjP---UjPl U F U R (F(Rj Bi)(j))jEjUjp2 j j j

(F(Rj,Bi)(i))iE I (F(Rj,Bi) (i))il

J

I

Define FR((Bi)i I) Coeq(rl,r2) to be the coequalizer of

relative U in Mod(T,B), and the front adjunction

(rl,r 2

: (Bi)i I URFR((Bi)i I
as the composition in

(2) fi((Bi)iEl

(Bi)i I

(Hi (Rj ,Bi) il

U
I (coeq (r

UI(F(Rj,Bi)
I

’r2)l

Ul.(coeq(rl,r2 UR (ceq(r
I

l,r2)) URFR((Bi)iI)

It remains to prove

(i) Coeq(rl,r2) MOdR(T,B

(ii) the universal property of a free construction with respect

the forgetful functor UR.
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(i) We have to verify Coeq(rl,r2) R.
J

We will show that coeq(rl,r2) is a coequalizer of (pl,P2) in
J

Mod(Tj,). Let g FjUjR---- M be a Tj-homomorphism satisfying

g, p! g P2" By an argument used in the lemma, M can be extended

in a unique way to a T-model M by Mi for all iEl, and g can be

extended uniquely to a T-homomorphism g F(Rj,Bi) M. It follows

that U r! --U r
2

and hence by definition of the coequalizer

toeq(rl,r 2) relative U there exists a unique T-homomorphism

h Coeq(r!,r2) M satisfying h o coeq(r!,r 2) , and the

1-components of h are the terminal morphisms into , of course,

which implies that the restriction hlj is the unique Tj-homom-
morphism satisfying h o coeq(r!,r2) I g. This implies

J J J

that Coeq(rl,r2) is a coequalizer of (pl,p2) and hence isomorphic
J

to R because (pl,p2) was the kernel pair of the coequalizer R.

By changing the representant of coeq(r,r2) we get equality. (More

1OJprecisely: use the fact that U Mod(T,B) B creates iso-

morphisms)

(ii) Let M T B be an R-model and f (fi:Bi Mi)iE I

a family of B-morphisms. With f. id for each jJ there exists a
j Rj

unique T-homomorphism f F(Rj,Bi) M in Mod(T,B) satisfying

(Rj,Bi)i1,jJ

UF(Rj,Bi)

(fi)i10 J

j

(Rj,Mi)iEI,jj UM

Considering only the J-components we get the equation

f gR

J
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and hence Uf o r Uf o r

F(Rj ,Bi)

coeq(r ,r
2

Coeq(r! ,r2) FR(Bi

which yields a unique f satisfying

M

which in fact is a MOdR(T,B)-morphism_ because coeq(r

gR f

i,r2)i
J

The uniqueness of f follows stepwise.

This proves U
R

to have a left adjoint F R.

U R creates absolute coequalizers, since U does and identities can

be taken as the J-components of this coequalizer. Hence UR
is

monadic by the P a r &-criterion 1.1. The same argument shows that

U
R

creates coequalizers of (UR-)kernel pairs [and filtered

colimits] if U does. q.e.d.

3.4 APPLICATIONS AND EXAMPLES: For applying theorem 3.3 the

conditions concerning the base category B are satisfied by all

categories mentioned in 2 8 and 2 9: Sets, Sets C--, Countable Sets,

Graph, Cat, CGHaus, Tol and all Top-Categories over Set, e.g. Top,

CG, Unif, Meas, Lim...

Furthermore the factorization property of the theory T (cf.3. 3.2)

is satisfied in all the examples in 2.8, if we fix the monoid, the

ring, or the input object as needed.

Left R-actions and (left) R-modules over B for a fixed R:

Of particular interest are topological R-modules for a topological

unitary ring R and R-modules for a ring-object R in a category

Sho(C) of set valued sheaves, i.e. R a sheaf of rings. By the

theorem 3.3, this category has an algebraic forgetful functor

U ModR---- Sho(C). By the triangle theorem we get an algebraic
j
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forgetful functor ModR Ab into the category of abelian group

objects in Sh.(C), i.e. into the category of sheaves with values in
j

abelian groups. The same is true for R-S-bimodules in Sh.(C).

Automata with fixed input I: Corresponding to the three types of

automata mentioned in 2.8 Mod I(T,B)_ for a fixed I E_B becomes the

category of Medvedev-, Mealy- or Moore-automata with fixed input

respectively (the category of Medvedev-automata with fixed input is

denoted by B-Medv in [|7]).

In each case the forgetful functor to B resp. B
2

is algebraic or

monadic depending on the base category (cf. 2.9).

Of special interest are deterministic, topological, compactly

generated, and tolerance automata (cf.[|7], [2|]). Automata over

B Cat are useful for the theory of formal languages (cf.[22]). By

algebraicity or monadicity of the forgetful functor there follow

most of the structural properties of automata mentioned in [|7]

sect. ||.

Note that in case of fixed output O the forgetful functor is not

monadic, in fact the factorization property is not fulfilled.

3.5 GENERALIZATION TO MONOIDAL CATEGORIES. The results of

section 2 are preserved, if the 1-sorted L a w v e r e theories are

replaced by [symmetric] monoidal theories and B in theorem 2.6 is

monoidal closed instead of cartesian closed (and (R) preserves

simultaneously coequalizers of kernel pairs), see [|5], and [16]

for the heterogeneous case. The same is true for theorem 3.3 because

of its "relative" formulation and since we did not use the universal

properties of in the proof.

A list of [symmetric] monoidal categories which are "nice" in the

above sense is to be found in [15]:3.|. Theorem 3.3 then gives in

particular the following examples of action-categories with
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algebraic forgetful functors: Left action over abelian groups

(R-modules), partial and bilinear automata, and topological auto-

mata with 6, % continuous in each component separately (using

(Top,@)) (cf. 17], [21 ]).

5
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