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ABSTRACT. This paper extends the convergence theory of the Accelerated Over-

relaxation (AOR) method to cases analogous to those considered first by Ostrowski

and then by Varga in connection with the Successive Overrelaxation (SOR) method.

Among others, the Ostrowski Theorem, some of the theorems by Varga on the extensions

of the SOR theory, and some recent results by Niethammer and by the authors are

obtained as special cases of the work presented in this paper. In addition,

several points are raised which suggest further research.
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i. INTRODUCTION AND PRELIMINARIES.

In a series of papers, Sisler [1]-[3] conceived and studied the idea of two-

parametric three-part splittings of the matrix A for the numerical solution of the

linear system

Ax b (I.i)

by a first order iterative method. His method was, in fact, an Extrapolation of

the Successive Overrelaxation (SOR) one. Sisler’s work has been extended recently

by Niethammer [4]. A couple of years ago, Hadjidimos [5] introduced an equivalent

splitting which led to the Accelerated Overrelaxation (AOR) method. This idea was

exploited further and some interesting results were obtained (see [6], [7] [8],
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[9] and [I0]). Under the assumptions that A, in (i.i), is nonsingular with non-

vanishing diagonal elements, the AOR method (scheme) is the following

(re+l) -i (m) -i
bx (D r) [(i )D + ( r) + Au]X + 00(D rAL)

Im 0,,2 (.2)

where D diag(A), - and- are the strictly lower and upper triangular parts

of A, and (z0) and r are the overrelaxation and acceleration parameters. It is

pointed out that, for r 0, (1.2) becomes an Extrapolated SOR method, with extra-

polation parameter /r and overrelaxation parameter r. It was under this restrict-

ion that both Sisler [i] [3] and Niethammer [4] considered and studied the

method (1.2).

Now we assume that the n n matrix A is Hermitian and can be split into the

form

H
A D E m (i.3)

where D and E are n n matrices, D is Hermitian and positive definite, and E
H

is

the complex conjugate transpose of E. Based on the splitting (1.3), we generalize

the scheme (1.2) as follows

(re+l) (m) Im 0 1,2 (i 4)x L x + (D- rE-ibr,

where the iteration matrix of the procedure is

L (D- rE)
-I

[(i- o)D + (oo- r)E + ooEH]; (1.5)
r,

for the existence of (1.4) and (1.5). det(D- rE) # 0 is assumed. In (1.4), D and

E need not be diagonal and strictly lower triangular respectively, as the matrices

D and in (1.2) have to be. It is also noted that, for r and D being either

the diagonal or a block diagonal part of A, the method (1.4) becomes the well

known generalized SOR method for which an important convergence theorem was given

by Ostrowski [ii] (see also Varga [12], p. 77). The corresponding theory was

extended by Varga [13], who also suggested that the most general form for E is

1
E (D A + S), (1.6)

with S being any skew-Hermitian matrix. Following the steps of the extension by

Varga, Hadjidimos [14] considered and studied the case where D is negative definite

and found some interesting results.
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The purpose of this paper is to extend the convergence theory by Ostrowski [ii]

and Varga [12 13] so as to cover the case of the generalized AOR scheme (1.4)

and to raise questions for further research in this area. This is what we do in

the next two sections; in addition, some comparisons and comments relating recent

results by de Pillis [15], Niethammer [4], Neumann and Varga [16], and the present

authors with those of this paper are made.

2. BASIC CONVERGENCE THEORY OF THE AOR METHOD (1.4).

We begin our analysis by giving five Lemmas on which our theory is based.

LEMMA I. Let A D E EH be an n n Hermitian matrix, where D is Hermit-

Jan and positive definite. Then the eigenvalues of the generalized Jacobi matrix

B D-I(E + EH) I D-IA (I is the unit matrix of order n) are real.

PROOF. Let D
1/2

be the unique Hermitian positive definite square root matrix

of the Hermitian positive definite matrix D (see [17], pp. 22-24). We form the

matrix as follows

D1/2BD-1/2 D-1/2(E + EH)D-1/2. (2.1)

The last expression shows that is Hermitian and therefore it possesses real

eigenvalues. So does its similar matrix B.

LEMMA 2. Under the hypotheses of Lemma i, let i i l(1)n be the eigen-

values of B. Then A is positive definite iff i < i i l(1)n.

PROOF. From Lemma i, we have I B D-IA. Thus, the real number i .
i l(1)n are the eigenvalues of the product D-1A where the matrices D

-1
and A

-i
are Hermitian with D positive definite. Then, according to Wigner [18], A is

positive definite iff i- i > 0 i -- l(1)n, which proves our assertion.

LEMMA 3. Under the hypotheses of Lemma i, the matrix M below

M (2 -’ )D + ( - r)(E + EH) (2 - r)D + ( - )A (2.2)

is positive definite iff the matrix_
(2 ) + (- r) (2.3)

is positive definite.

PROOF. Using the definitions (2.3), (2.1), and (2.2), we obtain
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M (2-)I + ( r)D-1/2 D-1/2 D-1/2MD-1/2 H(E + EH) D-1/2M(D-1/2)

In view of the last expression for M and according to Corollary 2.8 (p. 24 of [17]),

the lemma is proved.

LEMMA 4. Under the hypotheses of Lemmas 1 and 2, let minD. and
m

i
l

Then the matrix in (2.3) is positive definite iff the parametersM ma.xi"
and r take any values from their domains, as these are defined and given in

the table in each specific case which depends on the relative position of and
m

lN with respect to (wrt) zero.

PROOF. The eigenvalues . i l(1)n of B are the same as those of

(Lemma 1). Therefore, according to Lemma 3, the Hermitian matrix M (and consequent-

ly M) is positive definite iff all its eigenvalues given, because of (2.3), by the

expressions

[(2- ) + (- r)i]/ i l(1)n, (2.4)

are positive. Now we have to distinguish six cases, depending on the relative

position of m and M wrt zero. These are given in the table. In what follows,

we work out only Case I (the others can be treated similarly). Assume then that

0 <m < M" Thus, if < O, the relationships [(2- ) + (- r)i]/ > 0

]i l(1)n lead to the equivalent ones + (2 -)/. < r i l(1)n which, in

turn, are equivalent to 0 + (2 co)/l < r. If, on the other hand, 0 > O, we
m

arrive at + (2 )/i > r i l(1)n. Now we have to consider three cases.

If < 2, it is implied that r < 0 + (2 0)/lM; if c0 2, then r < 2; if co > 2,

r < + (2 -)/ These results, together with those obtained from the other
m

five cases, given in the table, prove the present lemma.
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Tab le

giving the possible domains of the parameters co and r

Case Relative position
of m and wrt zero

1 0 <Dm =<M

< DM0 m
0=m=M

4 Dm <0 <M
5 m <DM 0

6 m <--M <0

-domain

(-, O)

(0,2)

(2, +)

(0,2)

(0,2)

r-domain

(co + (2 co)/m’ +oo)

(-, co + (2 CO)IM

(_co, + (2 -)/
m

(-co, co + (2 )/M

(_co +co)

(co + (2 )/m, o + (2 oo)/nM)

(0,2)

(-co, O)

(0,2)

(2, +oo)

( + (2- co) l +co)m’

(_oo, co+ (2 o0)/M)

(co+ (2- co)/ +)
m

(2, +co)

(co+ (2- co)/l, +)

COROLLARY. Under the assumptions of Lemma 4 and the additional assumptions

that D diag(A) or D is a block diagonal part of A and in either case D is positive

definite, then (and consequently M) is positive definite iff the - and r-domains

are those given in the Cases 3 and 4 of the table (see also [I0] for the case

D diag(A)).

PROOF. Since D diag(A) or D is a block diagonal part of A, we have from

the expression for B (and therefore ) that tr(B) O. The latter implies that

< 0 < M so that only the Cases 3 and 4 of the table caneither m M 0 or m
occur. This completes the proof.
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LEMMA 5. (Householder-John Theorem [19]). Under the hypotheses of Lemma I,

let A A
I A

2
be a splitting of A generating the first order scheme x

(m+l)

-i (m) Aib H
A
1 A2x + Im 0,1,2 for the numerical solution of (i.I). If A

1 + A2

o(ATIA2 < 1 iff A is positive definite.is positive definite$ then

THEOREM i. (Generalized Ostrowski Theorem). Let A D E E
H

be an n n

Hermitian matrix, where D is Hermitian and positive definite and the det(D-rE) # 0

for any permissible pair of parameters r,m from the table depending on the position

of m and M wrt zero. Then, for the parameters r, from the appropriate intervals

of the table, the AOR method (1.4) converges (0(Lr,m) < i) iff A is positive def-

inite.

PROOF. It is obvious that, in our case of the scheme (1.4), the splitting of

_i _I
Lemma 5 is defined by A

1
(D rE) and A

2
[(i m)D + ( r)E + EH].

HHence, A
1
+ A

2
M. Since any pair (r,) of the parameters is taken so that it

belongs to the appropriate intervals of the table, then according to Lemmas 3 and

4 the Hermitian matrix M is positive definite. Thus by virtue of Lemma 5, the

present theorem is proved.

REMARK. It is obvious that the most important part of Theorem i is that where

the positive definiteness of A implies convergence of the AOR scheme. The converse

is of theoretical value only, unless knowledge of the position of and M wrt
m

zero is known in advance as e.g. in the cases of the Corollary of Lemma 4. If we

have to know the exact values for m and M in order to be able to form the m- and

r-domains from the table and find that (Lr,m) < 1 for any permissable pair (r,a)

so that positive definiteness for A is implied, then we can reach the last con-

clusion straightforwardly from the value of M which must be less than one (see

Lemma 2).

THEOREM 2. Let A D E E
H

be an n n Hermitian positive definite matrix,

where D is Hermitian and the det(D- rE) # 0 for one pair of parameters r,. If

%j lJ l(1)n are the eigenvalues of L and u. lJ l(1)n the corresponding
r, j

eigenvectors, which may not be all independent, then the AOR method (1.4) converges

(O(Lr,) < i) iff u.HMu. > 0 lJ l(1)n.
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PROOF. We follow the basic steps of the analysis in [13] and begin with the

relationships

L u %.u. lJ l(1)n.
r,j j j

By using (1.3), (1.5), (1.6), and notation similar to that in [14] giving that

H H H
a. u.Au. > 0 d u.Du., i ujSujJ J J j J J J lJ 1 (1)n, (2.4)

with . and i (-i) 1/2, we can obtain that
3

[(2- r)d (2- r)a.] iro.J J ’] lJ l(1)n.[(2- r)do + ra.]
3 J 3

(2.5)

From (2.5) and by virtue of (2.2) and (2.4), it can be taken that

H
4

2
a. u. Mu.

l%jl 2
i- 3 j l(1)n

2 2 2[(2- r)dj + raj]_ + r ’3
(2.6)

It is obvious that relationships (2.6) prove the theorem.

REMARK. We observe that, if M is positive definite, convergence of the AOR

method (1.4) is guaranteed under the assumptions of Theorem 2. Especially for the

2-c0
SOR method (r ), we have that M (----)D. Thus: i) the part of Theorem i of

Varga [13] "for any D positive definite and any (0,2) O(L,) < i" and ii) the

part of Theorem 2 of Hadjidimos [14] "for any D negative definite and E (-,0)U

(2,+) become special cases of the previous Theorem 2. Consequently, convergence

of these extensions of the SOR method is implied straightforward. In view of the

observation made at the beginning of this Remark, sufficient conditions for the

convergence of the AOR method can be given in the following two Corollaries.

H
COROLLARY I. Let A D E E be an n x n Hermitian positive definite

matrix and D be Hermitian and positive definite. Then sufficient conditions for

the AOR method to converge are det(D rE) # 0 and 0 < <_ r <_2, # 2 (see also

[0]).

PROOF. We observe that the assumptions of Theorem 2 are satisfied. However,

the restrictions on r and give that --2-r e 0 and __r- e O, where at least one of

the inequalities must be a strict one. From these relationships, the fact that D

and A are Hermitian and positive definite, and the second expression for the matrix
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M in (2.2), we readily deduce that M is positive definite. Hence, the AOR method

converges.

COROLLARY 2. Let A D E E
H
be an n n Hermitian positive definte matrix

and D be Hermitian and negative definite. Then sufficient conditions for the AOR

method to converge are det(D rE) # 0 and either 0 < , max{,2} < r (the pair

(r, ) (2,2) is excluded) or r -< < O.

PROOF. We observe that, in either case, we have
2-r <_ 0 and r-___ > O, where

at least one of the inequalities is a strict one. Since the Hermitian matrices D

and A are negative and positive definite respectively, then, because of the relat-

ionships for r and just obtained, we have from the last expression for M in

(2.2) that M is positive definite. The latter implies the convergence of the AOR

me tho d.

3. GENERAL COMMENTS DISCUSSIONS AND FINAL REMARKS.

As has already been seen, the theory presented in the previous section extends

not only the theory of the AOR method but also generalizes some well-known results

concerning extensions of the SOR method. Thus, in view of what has already been

discussed, we are now in a position to clarify some of the points of the previous

sections and also to indicate some questions for further research.

i) Examining very carefully the corresponding - and r-domains in all the

Cases of the table, we can find that their intersection is the empty set except in

the cases and subcases where m (0,2). For example, in the first subcase of Case i,

Thus we comewe have (-oo,0) n ( + (2 )/m +oo) since < + (2 )/m
to the expected conclusion that, for the generalized SOR method, the Generalized

Ostrowski Theorem (Theorem l) does hold for (0,2).

ii) It is astonishing the variety of ways one can use to prove Theorem i.

For the interested reader, we just outline two of them very briefly, a) If we

denote by g Im 0,1,2 the error vector of the scheme (1.4) at the m
th

iter-
m

ation (assuming 0) define the quantities m+ Im 0 1 2 and
o m m i

follow the steps as in Varga (see [12], pp. 77-78), we arrive at the relationship

HHM HAg g Am+I The latter is the same as relationship (3 56) of [12]
m m m m m+l
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the only difference being that instead of M the reduced form of it corresponding to

2-
the generalized SOR method, namely (---)D, is present. Consequently, by following

the reasoning of [12], the theorem can be proved, b) By following the theory given

in Young (see [17], pp. 80-84), in which Lyapunov’s theorem is contained, and using

(1.5) (1.6) and (2.2) we form the expression (I L ,)-i(I + L ) A-I(M- rs)
r r,

It is easy to prove that if A is positive definite the real parts of the eigenvalues

of the matrix A-I(M- S) are positive so that O(Lr,) < i and if O(L ) < i the
r,

real parts of the eigenvalues of A-I(M- S) are positive implying that A is posi-

tive definite. It should be noted that the proof just outlined was pointed out

(for a similar problem) to the first of the authors by Dr. M. Neumann [20].

iii) There exist other possible proofs for Theorem 2, too. One of them is that

based on a straightforward application of Theorem 2.2 of [19], taking into account

that A is Hermitian and positive definite.

iv) Niethammer [4, Theorem IA] gives the - and r-domains for which his

Extrapolated SOR method, for A positive definite and D diag(A) I, converges.

Since he also assumes that m < O, his results

0 < r _< 2, 0 < < (r
m

2)/(
m

i)

and

2 < r < 2/M, 0 < < (rM 2)/(
M

i)

(3.1)

cover only Case 4 of our table and must coincide with the results given there.

However, if we solve for in terms of r, and not the other way as we have done

when constructing the table, the corresponding domains for our Case 4 can be found

to be almost the same as those in (3.1). The only difference is that our LHS for

the first series of inequalities for r is 2/D < 0. Thus, our results, even in
m

that specific case, are slightly better. This had to be expected because of two

reasons. The first is that the case r 0 is not covered in [4] due to the form

of the scheme there. The second is that only positive values for the ratio /r

are considered. The latter, in view of the fact that happens to be always posi-

rive (see (3.1)), has as a consequence that r in Niethammer’s case can not be

negative.
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v) The problem of finding optimum parameters for and r has been solved so

far in two cases only. More specifically, Niethammer [4] solved the problem for

the scheme (1.4) with D diag(A) I, A I B, B weakly 2-cyclic consistently

ordered, and O(B) < i in the two cases: a) A Hermitian positive definite and b)

B skew-Hermitian. Avdelas and Hadjidimos [21] solved, quite independently, the

aforementioned problem (a) by considering the whole (r,)-plane and found the same

optimum parameters and, in two very special cases, some better ones. Varga [13]

solved the problem for the SOR scheme (1.4) (r ) with A and D Hermitian positive

definite and E (0,2) and, finally, Hadjidimos [14] did the same with D negative

definite and (-oo,0)U(2,+). Having in mind the complicated analysis, which

even the simplest special cases require, we reach the conclusion that the general

problem for the AOR scheme (1.4) must be a difficult one. It constitutes an open

problem which is being investigated.

vi) The problem of sharpness of some upper bounds for the spectral radius

O(Lr,0)’ which was put and solved first by Varga [13] in a special case for r

(SOR method) and then by Neumann and Varga [16] in cases for r and a class of

matrices A, is directly connected with the solution of the problem of the optimum

parameters mentioned in (v) previously. Thus, this new general problem remains an

open one and, at the moment, it can be tackled only in special cases for which the

optimum parameters are already available.

vii) A final remark concerning the improvements of the results of this paper

by the technique developed recently by de Pillis [15]. In [15], second order iter-

ative schemes from first order ones are constructed by means of an ellipse symmetric

to the real and imaginary axes which captures the spectrum O(B) of the iteration

matrix-B of the first order procedure. The second order schemes, which are con-

structed under the restriction that (B) lies in the infinite strip {z: ReEl < i},

are in general faster that the corresponding first order ones. However, as de Pillis

remarks in 5 of [15] in case the capturing ellipse is a circle, then the second

order scheme degenerates into the corresponding first order one. In [21], the idea

by de Pillis is exploited further by considering a monoparametric family of captur-
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ing ellipses and among them the one for which the rate of convergence of the second

order scheme is a maximum. Thus, in the case of the AOR scheme (1.4) (in fact any

AOR scheme can be treated similarly), a combination of the techniques of [21] and

[15] may improve the convergence rates. For this, the operator A of the original

system (I.i) is written in the form of the multiplicative splitting A (I B) (see
o

I[15]) with Ao (D- rE) and B Lr,o and then, assuming knowledge of (Lr,00)’ the

optimum capturing ellipse (see [21]) is found. Unless 0(L < i and the optimum
r,

capturing ellipse is a circle, the rate of convergence of the AOR scheme can not

be improved upon by combining the techniques of [15] and [21]; in all the other

cases, an improvement can be achieved. It is understood that the optimum pair

(r,) must be used in the AOR scheme whenever this is available.
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