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There are some errors in the above paper. There is a line missing at the
bottom of page 672. Also, pages 681-683 are organized incorrectly.

These errors are corrected as follows:
Replace the last sentence on page 672 with:

" géiG gE(Y)g—1 = E(S). 1In particular E(Y) 1 J # @ for all J € U(S). More-

over the length of any maximal chain in U(S) equals dim Y. "

Replace page 68l beginning from line 14 (from the top), the entire page
of 682 and the first seven lines (from the top) of page 683 with:

"PROOF. We can assume that e is the identity element of S (otherwise we work
with eSe). By Lemma 1.1 we are reduced to the case when f is the zero of S. By
Corollary 1.5, we are reduced to the case when S is also a d-semigroup. By Lemma
2.2 and Theorem 2.7, we can assume that S is as in Theorem 2.7, with

e=(1,...,1), £ =(0,...,0). Let v, = {(wl(a,...,a),...,wn(a,...,a))IaE K},

dimS_. =1, S

S, =V 1’ 1

1 1° Then e, f €S

1€ S. Define 6:K > Sl as

8(a) = (wl(a,...,a),...,mn(a,....,a)). Then 6 is a *-homomorphism. So S1 is

connected. This proves the theorem.
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3. POLYTOPES
If X g;]R“, then we let C(X) denote the convex hull of X (see[4]). The con-
vex hull of a finite set in R" is called a polytope [4]. If the vertices of P

are ratW@onal, then P is said to be a rational polytope. If XC P, then X is said

to be a face of P [4; p. 25] if for all a, bE P, a € (0,1), ada + (1 - a)a € X if
and only if a, b& X. Let X(P) denote the set of all faces of P. Then [4; p. 21],
(X(P),C ) is a finite lattice. Dimension of P is defined to be the dimension of
the affine hull of P [4; p.3]. Then dimension of P = (length of any maximal chain

in X(P)) - 1. Two polytopes P

1 P2 have the same combinatorial type if X(Pl) -

X(Pz) (see [4; p. 38]). By [4; p. 244], every polytope of dimension < 3 has the
same combinatorial type as some rational polytope. However this is not true in

general [4: p. 94]. If u = (al,...,an), v = (Bl,...,Bn) €ER" then let u + v =
n
Z o,B, denote the inner product of u and v.
i"i
i=1
Let S be a semigroup. An ideal I of S is said to be semiprime if for all
acCs, aze I implies a € I. I is prime if for all a, b €S, ab& I implies a €I

orb ¢ I. Let

1(8) = {All ideals of S}

A(S) = {All principal ideals of S}

r(S) = {All semiprime ideals of S} U {@}
A(S) = {All prime ideals of S} U {@}.
X(S) = {S\I|I € A(S)}.

2(S) = Maximal semilattice image of S.

It is easy to see that (A(S), C) z (A(Q(S)), C ) is a complete lattice. If S is
finitely generated, then Q(S) is finite and so (A(S), C ) is a finite lattice.

THEOREM 3.1. Let S be a connected d-semigroup with zero. Define a:I(S) -
T(e(S)) as a(I) = {x|x € ¢(5), x(a) = O for all a € I}. Define B:T(2(S)) + I(S)
as B(W) = {ala€ s, x(a) = 0 for all x € W}. Then a,8are inclusion reversing

bijections and B = a_l. Moreover a(A(S)) = A(®(S)).
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PROOF. Clearly o,B are inclusion reversing. Let I1E A(S). Then I = eS for
some e € E(S). So a(I) = {x|x € ¢(S), x(e) = 0}. It follows that a(I) € A((S)).
Clearly I C B(a(I)). We claim that I = B(a(I)). Suppose not. ‘Then there exists
a € B(a(I)) such that a @& I. Let a Hf, f EE(S). Then f € I, f € 8(a(I)). So
e # f. By Lemma 2.1 (2), there exists x € (S) such that x(f) = 1, x(e) = 0. So
X € a(I) and f & B(a(I)), a contradiction. So

for all I € A(S), o(I) € A(#(S)) and B(a(I)) = I (12)

Let P € A(2(S)). We calim that B(P) € A(S) and a(B(P)) = P. By Lemma 2.1, this
is true for P = ¢(S). So assume P # ¢(S). Then F = ¢(S)\P is a subsemigroup of
®(S). By Lemma 2.2 we can assume that S is a closed submonoid of some (Kn.'),
0= (0,...,0) € S and that ¢(S) = < XpoeeeoXy > where X4 is the ith projection of
S into K, i =1, ...,n. Let A = {xilxi.E F}. Then <A> = F. Llet e = (el,...,en)
where e, = 1if xiEE A, e; = 0 if Xi.¢:A' We claim that e €S. Suppose not. Then
by Lemma 2.3, there exist u, v € F(Xl,...,Xn) such that u(a) = v(a) for all a € S
and u(e) # v(e). Since u(e)2 = u(e) and v(e)2 = v(e) we can assume that u(e) = 1,

v(e) = 0. Clearly u(xl,...,xn) = v(xl,...,xn). Since u(e) =1, u(Xl,...,Xn)



