ON ELATIONS IN SEMI-TRANSITIVE PLANES

N.L. JOHNSON

Department of Mathematics The University of Iowa Iowa City, Iowa 52242 U.S.A.

(Received January 2, 1980)

<u>ABSTRACT</u>. Let π be a semi-transitive translation plane of even order with reference to the subplane π_0 . If π admits an affine elation fixing π_0 for each axis in π_0 and the order of π_0 is not 2 or 8, then π is a Hall plane. <u>KEY WORDS AND PHRASES</u>. Elations, Semi-transitive planes. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 50D05, 05B25.

1. INTRODUCTION.

Kirkpatrick [9] and Rahilly [10] have characterized the Hall planes as those generalized Hall planes of order q^2 that admit q+1 central involutions.

In [7] the author has shown that the derived semifield planes of characteristic \neq 3 and order q² are Hall planes precisely when they admit q+1 central involutions. This extends Kirkpatrick and Rahilly's work as generalized Hall planes are certain derived semifield planes.

If a translation plane π of order q^2 admits q+1 affine elations with distinct axes then the generated group \mathscr{L} contains SL(2,q), $S_Z(q)$ or contains a normal subgroup N of odd order and index 2 (Hering [5]). In the latter case, little is known about \mathscr{L} except that it is usually dihedral.

In this article, we study semi-transitive translation planes of order q^2 that admit q+1 affine elations.

In [8], the author introduces the concept of the generalized Hall planes of type i. These are derivable translation planes that admit a particular collineation group which is transitive on the components outside the derivable net. In this situation the group is generated by Baer collineations.

More generally, Jha [6] has considered the "semi-transitive" translation planes.

(1.1) Let π be a translation plane with subplane π_0 . If there is a collineation group \mathscr{L} such that

1) \mathscr{L} fixes $\pi_0 \cap \ell_{\infty}$ pointwise,

2) leaves π_0 invariant, and

3) acts transitively on $l_{\infty} - \pi_0 \cap l_{\infty}$,

then π is said to be a <u>semi-transitive</u> translation plane with reference to π_0 and with respect to \mathscr{P} .

Our main result is that semi-transitive planes of order not 16 or 64 that admit elations with axis \neq fixing π_0 for every component \neq of π_0 are Hall planes. We also give a necessary and sufficient condition that a translation plane of order $q^2 \neq 64$ admitting q+1 elations with distinct axes is derivable.

2. TRANSLATION PLANES OF EVEN ORDER q² ADMITTING q+1 ELATIONS.

(2.1) THEOREM. Let π be a translation plane of even order $q^2 \neq 64$ that admits q+1 affine elations with distinct axes. Let \Re denote the net of degree q+1 that is defined by the elation axes and assume the group D generated by these elations leaves \Re invariant. Then \Re is derivable if and only if D is either isomorphic to SL(2,q) or is dihedral of order 2(q+1) where the cyclic stem fixes at least two components.

PROOF. If D is isomorphic to SL(2,q) then η is derivable and actually π is Desarguesian by Foulser-Johnson-Ostrom [3].

Let $D = \langle \sigma, \chi \mid \sigma^2 = \chi^{q+1} = 1, \sigma \chi = \chi^{-1} \sigma \rangle$. If $\langle \chi \rangle$ fixes the components X = O, Y = O then we may choose coordinates so that σ is $(x,y) \rightarrow (y,x)$ and χ is $(x,y) \rightarrow (xT,yT^{-1})$ for some matrix T of order q+1. By Ostrom [11], Theorem 3, there is a Desarguesian plane Σ containing the two χ -fixed components and η . Clearly η is an André net in Σ and thus derivable in π .

Conversely, suppose $\mathcal N$ is derivable. Since each elation fixes $\mathcal N$, D must fix each Baer subplane of $\,\%$ incident with $\,\mathcal{O}$. By Foulser [2], Theorem 3, $D \leq GL(2,q)$ in its action on π so that $D \leq SL(2,q)$ (each elation is then in SL(2,q)). By Gleason [4], D is transitive on the elation axes so $q+1 \mid |D|$. Thus, D is clearly SL(2,q) or is dihedral of order 2(q+1). Moreover, if η is derivable then χ fixes at least two infinite points of $\pi - \eta$. Let $\overline{\eta}$ replace η so \mathscr{I} fixes $\overline{\eta}$ componentwise in the derived plane $\overline{\pi}$. Let $\langle \overline{\chi} \rangle \triangleleft \langle \chi \rangle$ such that $|\overline{x}|$ is a prime 2-primitive divisor of q^2-1 (one exists since $q^2 \neq 64$). Then $\overline{\chi}$ fixes at least two infinite points of $\overline{\pi} - \overline{\eta}$ so there is a <u>unique</u> Desarguesian plane Σ containing the $\overline{\chi}$ -fixed components of $\overline{\pi}$ (see Ostrom [11], Cor. to Theorem 1—uniqueness comes from the fact that the degree of $\Sigma \cap \pi$ is greater than q+1). Since \mathcal{J} permutes the components of $\Sigma \cap \overline{\pi}$ (i.e., $\langle \overline{\chi} \rangle$ is characteristic in $\langle \chi \rangle$), \mathscr{J} is a collineation group of Σ . The collineation χ has the form $(x,y) \rightarrow (x^{\phi}a, y^{\phi}a)$ where ϕ is an automorphism of $GF(q^2)$ and $a \in GF(q^2)$. (Note χ fixes $\overline{\mathcal{H}}$ componentwise.) Since q+1 is odd, $\langle \chi^2 \rangle = \langle \chi \rangle$. Choosing coordinates so that the components of $\overline{\mathcal{H}}$ are $X = \mathcal{O}$, $Y = \mathcal{O}$, $y = x\alpha$, $\alpha \in GF(q^2)$ then χ fixes $y = x\alpha$ for all $\alpha \in GF(q^2)$ if and only if $\alpha^{\phi} = \alpha$. Since $\langle \chi^2 \rangle = \langle \chi \rangle$, we may assume $\phi = 1$. Thus, χ fixes ℓ_{∞} of Σ pointwise. Since Σ and π share at least two components (those fixed by χ), χ must fix at least two components of π .

3. SEMI-TRANSITIVE TRANSLATION PLANES OF EVEN ORDER.

Let π be a translation plane of even order q^2 that admits q+1 elations as in section 2. Then, π is a derivable plane provided the generated group D is dihedral and the cyclic stem fixes at least 2 points or SL(2,q). In any case let η denote the net defined by the elation axes. Let \mathscr{B} be a collection group that commutes with D. Then clearly, \mathscr{B} must fix $\eta \cap \ell_{\infty}$ pointwise.

(3.1) THEOREM. Let π be a translation plane of even order $q^2 \neq 64$ that admits q+1 elations with distinct axes. Assume the group D generated by these

q+1 elations leaves the net \mathcal{N} of the elation axes invariant. Let \mathscr{L} be a collineation group which commutes with D and is transitive on $l_{\infty} - \mathcal{N} \cap l_{\infty}$. Then π is a Hall plane.

PROOF. Since $q^2 \neq 64$, there is a prime 2-primitive divisor m of q^2 -1. By Gleason [4], $q+1 \mid \mid D \mid$. Clearly, m $\mid q+1$. Let χ be an element of D of order m. χ acts on the q(q-1) points of $\ell_{\infty} - \eta \cap \ell_{\infty}$ so must fix at least two points of $\ell_{\infty} - \eta \cap \ell_{\infty}$. Since \mathscr{L} commutes with χ and \mathscr{L} is transitive on $\ell_{\infty} - \eta \cap \ell_{\infty}$, χ must fix $\ell_{\infty} - \eta \cap \ell_{\infty}$ pointwise.

By the corollary to Theorem 1, Ostrom [11], there is a Desarguesian plane Σ such that the components fixed by χ in π are exactly the common components of Σ and π . Let $\pi = \eta \cup \eta$ where η is the net complementary to η in π . Then $\Sigma = \overline{\eta} \cup \eta$ for some net $\overline{\eta}$ of degree q+1. So Σ and π are two extensions of a net η of critical deficiency (see Ostrom [12]). Then π must be Hall since Σ and π must be related by derivation (i.e., π cannot be itself Desarguesian) by Ostrom [12].

The conditions of (3.1) are close to giving the definition of a "semi-transitive" translation plane (see (1.1)). In (3.1), it is possible that \pounds may <u>not</u> satisfy condition 2. Also, it is not clear that a semi-transitive translation plane is derivable. However, Jha [6] shows if π has order not 16 and there is a nontrivial kern homology in π then π is derivable and π_0 is a Baer subplane.

We may overcome this restriction on the kern in our situation:

(3.2) THEOREM. Let π be a semi-transitive translation plane of even order with respect to a collineation group \mathscr{J} and with reference to a subplane π_0 . Let π admit an affine elation for each axis in π_0 .

1) If the order of π_0 is not 8 then π is derivable.

2) If the order of π_0 is not 2 or 8 then π is a Hall plane.

PROOF. Following Jha's [6] ideas, let π_1 be a minimal subplane of π properly containing π_0 . Clearly, the stabilizer \mathscr{I}_{π_1} of π_1 is a semi-transitive collineation group of π_1 with reference to π_0 . Moreover, a sylow 2-subgroup of \mathscr{I}_{π_1} must leave π_0 pointwise fixed since \mathscr{I} fixes π_0 and fixes $\pi_0 \cap \mathscr{L}_{\infty}$ pointwise. (Note $|\mathscr{I}_{\pi_1}|$ is divisible by $(2^r+1) - (2^s+1)$ for some r,s.) Clearly, π_0 is a <u>Baer</u> subplane of π_1 .

Every elation which leaves π_0 invariant must also leave any superplane invariant. So the group D generated by the elations leaves π_1 invariant and, clearly, \mathscr{L} commutes with D since \mathscr{L} fixes $\pi_0 \cap \ell_{\infty}$ pointwise (\mathscr{L} must commute with each central collineation fixing π_0).

By (3.1), if the order of π_0 is not 8 then π_1 is a Hall plane and π_1 is derivable. We may now directly use Jha [6] to show that if the order of π_0 is <u>not</u> 2 then $\pi_1 = \pi$ (that is, Jha uses the hypothesis that there is a kern homology to show that π_1 is derivable).

Actually, our proof of (3.2) proves the following more general theorem for arbitrary order.

(3.3) THEOREM. Let π be a semi-transitive translation plane with reference to π_0 and with respect to \mathscr{L} and order p^r . Let χ be a collineation generated by central collineations leaving π_0 invariant such that $|\chi|$ is a prime p-primitive divisor of (order π_0)²-1 (where the order of π_0 is not 2). Then π is a Hall plane.

Note that a semi-transitive plane of odd order p^{2r} must admit Baer p-elements (see Jha [6]). By Foulser [1], we could then not have <u>both</u> Baer p-elements and elations so we could restate our Theorem (3.2) without reference to order. (3.2)2) is also valid if the order π_0 is 8. The arguments supporting this will appear in a related article.

REFERENCES

- Foulser, D. A. Baer p-elements in translation planes, <u>J. Algebra</u> 31(1974) 354-366.
- Foulser, D. A. Subplanes of partial spreads in translation planes, <u>Bull</u>. <u>London Math. Soc</u>. 4(1972) 1-7.
- 3. Foulser, D. A., N. L. Johnson and T. G. Ostrom. Characterization of the Desarguesian and Hall planes of order q^2 by SL(q,2), submitted.
- 4. Gleason, A. M. Finite Fano planes, Amer. J. Math. 78(1956) 797-806.
- Hering, Ch. On shears of translation planes, <u>Abh. Math. Sem. Hamburg</u> 27(1972) 258-268.
- 6. Jha, V. Finite semi-transitive translation planes, to appear.
- Johnson, N. L. On central collineations of derived semifield planes, <u>J. Geom</u>. 11/2(1978) 139-149.

- Johnson, N. L. Distortion and generalized Hall planes, <u>Geom. Ded</u>. 4(1975) 1-20.
- Kirkpatrick, P. B. A characterization of the Hall planes of odd order, <u>Bull</u>. <u>Austral. Math. Soc</u>. 6(1972) 407-415.
- Rahilly, A. Finite collineation groups and their collineation groups, Thesis, Univ. of Sydney, 1973.
- 11. Ostrom, T. G. Linear transformations and collineations of translation planes, J. Algebra (3) 14(1970) 405-416.
- 12. Ostrom, T. G. Nets with critical deficiency, <u>Pacific J. Math</u>. 14(1964), 1381-1387.