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ABSTRACT. Integral inequalities of the Bellman-Bihari type are established for

integrals involving an arbitrary number of independent variables.
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i. INTRODUCTION.

In a number of recent papers, Dhongade and De. [i] and Pachpatte [2,3,4] have

generalized the well known Bellman inequality [5] and Bihari’s generalization of

it [6] in several different .directions. Although the results concern only functions

of a single variable, it was shown in [7] that corresponding inequalities also hold

for functions of several independent variables. The purpose of this note is to

show that the technique employed in [7] can be profitably utilized to establish

more general integral inequalities of the Bellman-Biharl type in any number of

independent variables. We present here some of the results along this line.

As in [7] we assume that all the functions under discussion are defined in a

bounded domain R of E
n

which, for convenience, is assumed to contain the origin.

The symbol x < y, where x (x
I Xn and y (Yl yn are any two

for i i, n. We also adopt the notationpoints of R, means x
i

< Yl

f(s)ds-- Xl f(sI, dsI ds
0 0 n
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2. MAIN RESULTS.

Our first result is a variation of Theorem 3 of [7].

THEOREM i. Let u, f, and g be continuous and nonnegatlve in R and let a be

continuous, positive and nondecreasing in R. Let W: [0, =) - [0, =) be continuously

differentiable and nondecreasing such that

-( v-uv u) < W( ), u > 0, v > 0 (2.1)

Then the inequality

i
x

iu(x) < a(x) + f(s)[u(s) + g(t)W(u)dt]ds
0 0

(2.2)

implies

Ixu(x) < a(x)[l + f(s)G (G(1) + f(t)dt)ds]
0 0

if g(x) < f(x) or

u(x) < a(x)[l + f(s)G (G(1) + g(t)dt)ds]
0 0

(2.3)

(2.4)

if f(x) < g(x), where G-lis the inverse of the function

G(w) r+W(r)’ w > Wo > 0

O

(2.5)

provided G(1) + f(t)dt lies in the domain of G-I.
0

PROOF. Since a > 0, W > 0 and both are nondecreasing, and by (2.1), we may

rewrite (2.2) in the form

m(x) < I + f(s)[m(s) + g(t)W(m)dtlds
0 0

(2.6)

where re(x) < u(x)/a(x). If we set v(x) equal to the right hand side of (2.6) and

differentiate, we find

;xDl.,,DnV(X) f(x)(m(x) + g(t)W(m)dt)
0

(2.7)

X

< f(x) (v(x) + g(t)W(v)dt)
0

where D.1 indicates differentiation with respect to xi, i l,...,n.



BELLMAN-BIHARI INTEGRAL INEQUALITIES 99

Let us define
x

w(x) v(x) + g(t)W(v)dt
0

(2.8)

and assume g(x) < f(x). Then, by differentiating (2.8) and using (2.7), we obtain

Dl...DnW(X) Dl...DnV(X) + g(x)W(v) (2.9)

< f(x)w(x) + g(x)W(w)

< (x) (w(x) + W(w)

Set S(x) w(x) + W(w). Following the technique in [7], we observe from (2.9)

that

or

S(X)Dl. DnW(X)
2

< f (x) + 2S(x) S(x)

DIS (x)D2...DnW(X)

D
1
(D2"" "DnW(X)) < f (x)

S(x)

Note that, from the hypotheses, it follows that Dl(W(X) + W(w)) > 0, for

i 1,2,...,n. Hence, integrating with respect to xI from 0 to xI, we flnd

S(x)
< i f(sl,x2,... ,xn)ds (2.io)

Similarly, since

D2S (x) (D3. .DnW(X))
2

s(x)
>0

the left hand side of (2.10) can be replaced by

D2(D3"’’DnW(X)) < II f(sl,X2 ,Xn)dS

By integrating this from 0 to x2, we obtain

D3"’’DnW(X) < I2 II f(sI
s
2
x
3 dSldSS(x)

’Xn) 2

Continuing in this manner, we have after (n-l) steps

n < Xl
f(sl dSl dSn-S(x)

0 0
Sn-I ’xn) i

(2.ii)



i00 E.C. YOUNG

With the function G(w) defined in (2.5), we note that

DnG(W) G’ (W)DnW(X) DnW(X)/(w(x) + W(w)). Hence, integration of (2.11) from

0 to x yields
n

G(w(xI ,Xn)) G(w(x
I ,Xn_l,0)) <_ f(s) ds

0
or

X

w(x) < G-I (G(1) + f(s)ds)
0

(2.12)

since w(x) v(x) I when x. 0 for any i, i < i < n.

From (2.7) and (2.8) we have

DI...DnV(X) < f(x)w(x) (2.13)

Substituting for w(x) from (2.12) and integrating (2.13), we finally obtain

x -Iv(x) < i + f(s)G
0

(G(1) + f(t)dt3ds
0

(2.14)

The inequality (2.3) follows from (2.6), (2.14), and the fact that re(x) u(x)/a(x).

If f(x) < g(x), then we need only replace f by g in the last line of (2.9) to

obtain again (2.12) with f replaced by g. The result (2.4) then follows in the

same fashion.

Our next theorem combines the feature of Theorems i and 2 of [7].

THEOREM 2. Let u, f, g, and h be continuous and nonnegative functions in R,

and let a be continuous, positive, and nondecreasing in R. Let Z: [0, =) / [0, =)

satisfy the same conditions as W in Theorem i such that Z is submultiplicative.

If u satisfies

u(x) < a(x) + f(s)[u(s) + g(t)u(t)dt]ds + h(s)Z(u)ds
0 0 0

(2.15)

then

where

u(x) < a (x) p (x) H-l (H (1) + h(s)Z(p)ds)
0

p(x) i + f(s)exp (f(t) + g(t))dtds
0 0

-i
and H is the inverse of the function

(2.16)

(2.17)
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v
drH(v) Z(r)’ v > Vo > 0 (2.18)

0

The proof of this theorem makes use of the following result which we state as

a lemma. This was established in [7] as Theorem i.

LEMMA. Under the hypotheses of Theorem 2, the inequality

ix fsu(x) < a(x) + f(s)[u(s) + g(t)u(t)dt]ds
0 0

implies

ix fsu(x) < a(x)[l + f(s)exp (f(t) + g(t))dtds].
0 0

PROOF of Theorem 2. As in Theorem I we rewrite (2.15) in the form

ix fsm(x) < i + f(s)[m(s) + g(t)m(t)dt]ds
0 0

X

+ h(s)Z(m)ds
0

(2.19)

If we set
K

v(x) i + h(s)Z(m)ds
0

(2.20)

then (2.19) becomes

re(x) < v(x) + f(s)[m(s) + g(t)m(t)dtlds.
0 0

Hence, by the lemma, we have

m(x) < v(x)(l + f(s)exp (f(t) + g(t))dtds)
0 0

(2.21)

< v(x)p (x)

Since Z is submultiplicative, we note that Z(m) < Z(v)Z(p). Therefore,

differentiating (2.20) with respect to Xl,...,Xn, we find

Dl...DnV(X) h(x)Z(m)

< h(x)Z (v)Z (p)
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DI...D v(x)
Or n < h(x) Z (p)Z(v)

(2.22)

By the same argument as in the proof of Theorem i, we can integrate (2.22) to

otaln

IxH(v(xI ,x )) H(V(Xl, Xn_l,0)) < h(s)Z(p)ds
n 0

where H(v) is defined by (2.18). This gives

v(x) < H-I(H(1) + h(s)Z(p)ds)
0

(2.23)

The substitution of (2.23) in (2.21) yields the inequality (2.16) since

re(x) u(x)/a(x).

When g(x) 0, Theorem 2 reduces to Theorem 3 of [7].

By combining Theorems I and 2, we finally have

THEOREM 3. Let u, a, f, g, h, and Z be as in Theorem 2 and let W be as in

Theorem i. If u satisfies

x isu(x) < a(x) + f(s)[u(s) + g(t)W(u)dt]ds
0 0 (2.24)

then

where

E

+ h(s)Z(u)ds, where g(x) < f(x)
0

u(x) < a (x) q (x) H-l (H (1) + h(s)Z(q)ds) (2.25)

q(x) i + f_s_G-l_G_l_ + f(t)dt)ds
0 0

(2.26)

-i -iG is the inverse of the function defined in (2.5) and H is the inverse of the

function defined in (2.18).

PROOF. We rewrite (2.24) in the form

where

m(x) < v(x) + f()[m(s) + g(t)W(m)dt]ds
0 0

(2.27)

x
v(x) I + h(s)Z(m)ds

0
(2.28)
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with m(x) u(x)/a(x). .Then according to Theorem i, we have

m(x) < v(x)[l + f(s)G-l(G(1) + f(t)dt)ds]
0 0

(2.29)

< v(x) q (x)

Since Z(m) < Z(v)Z(q), we obtain from (2.28)

Dl’’’DnV(X) h(x)Z(m) _< h(x)Z(v)Z(q)

With H(v) defined by (2.18), we obtain as in the proof of Theorem 2

v(x) < H-I(H(1) + h(s)Z(q)ds)
0

The substitution of this for v(x) in (2.29) leads to the desired inequality (2.25).

Observe that, when h(x) 0, (2.25) reduces to (2.3); when W u, it agrees

with (2.16) with g replaced by f in view of the condition g < f.

We remark that our Theorems I, 2, and 3 correspond respectively to Theorems

4, 2, and 5 of [4]. From the argument presented above, we readily see that other

more general integral inequalities can also be estabiished for n independent

variables along the lines considered in [i] and [4].
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