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ABSTRACT. A member of a class of evolution systems is defined by averaBing a one-

parameter family of invertible transformations G with a semigroup T The

resulting evolution system, U(t,s) G(t)T(t-s)G(s) -1, preserves continuity and

strong continuity, and in case G is a linear family, may have an identifiable

generator and resolvent both of which are constructed from T. Occurrences of the

class of evolutions are given to show possible applications.
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i. INTRODUCTION.

Given a subset C of a Banach space H, a strongly continuous evolution

system of continuous transformations on C is a family of functions U

U(t,s):. t "_; s _> 0 so that if t _> s _> r _> 0 then

i. U(t,s) is a continuous function from C into C,

ii. U(s,s) I, the identity on C,

iii. U(t,s)U(s,r) U(t,r), and
(DI

iv. if x E C, then {(p, U(p,s)x) p _> s is continuous.
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Such systems arise as a result of having unique solutions to the evolution

equation y’(t) A(t)(y(t)), y(s) x, where x is a point of C and if t O,

A(t) is a function from a subset of C into H.

The study of evolution systems has in several papers been made through the

study of semigroups (see for instance Kato[5]). A strongly continuous semigroup

of continuous transformations on C is a family T { T(t): t > 0 } of continuous

functions from C into C so that if t and s are in [0, ), then

i. T(t+s) T(t)(T(s)),

ii. T(0) I, and

iii. if x is an element of C, {(p,T(p)(x)) p > 0 }
is continuous.

(D2

By the relationship U(t,s) T(t-s), each semigroup is a specialized evolution

system. One approach to the study of evolution systems has been to study semi-

groups and try to generalize to evolution systems properties the semigroups

display. A second approach (see Ball [i], or Neveu [8]) has been to embed U into

a semigroup T on [0, =)xC by the action T(t)(s,x) (t+s,U(t+s,s)x) and study T.

Goldstein ([4]), however, has shown that even if U has linear, non-expansive maps

and analytic trajectories, T may not even have Lipschitz maps and hence may fail

to satisfy the hypothesis which is typically used in theorems about semigroups.

This paper gives an alternative approach to studying evolution systems

through semigroups. Here the evolution systems is not studied by analogy but

rather by identifying a class of evolution systems for which semigroups are

actual structural components. Results concern the structure of

such evolution systems as they relate to the existing theory for

evolution systems. Examples are given that illustrate under what

conditions these evolution systems occur.

2. DEFINITIONS and THEOREMS.

In addition to the notation established in the introduction,

the following notation will be used. L(H,H) will denote the

normed vector space of continuous linear transformations on H with,

for f in L(H,H), fl glb {m: if p H, Ilf (p) II __< m II ell }.
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R(H,H) will denote the subset of L(H,H) whose elements have

inverses that are in L(H,H). The identity function on the numbers

will be denoted by j. The domain (range) of a function f will be

denoted Df(Rf)

DEFINITION: Suppose that G is a family of functions so that

if t >_ 0, G(t) C-> C. The statement that G is strongly continuous

at the point x of C means that g {(t,G(t)(x)) t > 0} is
x

continuous, g will be called the trajectory of G from x.
X

DEFINITION: Suppose that U is a strongly continuous evolution

system of continuous tranformations on C. The statement that

A is the infinitesimal enerator for U means that A {A(t):t > O}

is so that if t > O, A(t) {(x,y) x g C and y

-i
lim h (U(t+h,t) (x) x) }.
h/O

Theorem i establishes a way of combining a semigroup with a

one parameter family so that the result exhibits evolution system

structure.

Conditions are given under which the frm of the infinitesimal

generator can be guaranteed.

THEOREM i. Suppose that T is a strongly continuous semi-

group of continuous transformations on C with infinitesimal gen-

erator B and G is a strongly continuous family of functions on C

so that if t > 0, G(t) is Lipschitz and has a Lipschitz inverse

on C; and if a and b are numbers so that a < b, {k: a< p < b and

k is the Lipschitz norm of G(p)} is a bounded set. For t > s > O,

-i
define U(t,s) G(t)T(t-s)G(s)

Then U is a strongly continuous evolution system of continuous

transformations on C. Suppose, in addition, that C=H, x g H,

G(s) g R(H,H) for each s, and t is a number so that G(t)-ix

is in the domain of B and the trajectory of G from G(t)-ix is
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differentiable at t. Then, if A denotes the infinitesimal generator

-i
for U, x is in the domain of A(t) and A(t)x G(t)BG(t) (x)+gy’(t)

where y G(t)-Ix.

PROOF: To see that U is an evolution system of continuous

-i
transformations on C, note that (i) U(t,s) --G(t)T(t-s)G(s) is

the composition of continuous functions each mapping C into

-i
C; (ii) U(s,s)= G(s)T(s-s)G(s) I; and (iii) U(t,s)U(s,r)

G(t)T(t-s)G(s)-l(G(s)T(s-r)G(r)- G(t)T(t-r)G(r) -I U(t,r).

For strong continuity, suppose that s _> 0, x g C, and

{t n} converges to t in [s, ). II U(t ,s)x- U(t,s)xll
n=l n

llG(tn)T(tn-S)G(s)-l(x) G(t)T(t-s)G(s)
-I -I

(x) < llG(tn)T(t -s)G(s) (x)
n

-i -i
-G(t )T(t-s)G(s) (x) II + II G(t )T(t-s)G(s) (x)

n n

G(t)T(t-s)G(s)-l(x) II < IG( t llr(t -s)G(s)-l(x)-r(t-s)G(s)-l(x)
n

Lip

-i -i
+ II G(t )T(t-s)G(s) (x) -G(t)T(t-s)G(s) (x) II T is stronglyn

at G(s)-l(x), {IG(tn) I} n=l is a bounded numbercontinuous

-I
sequence, and G is strongly continuous at T(t-s)G(s) (x). Thus

each term of the final inequality can be made arbitrarily small

and each trajectory of U is continuous.

With G satisfying the additional assumptions, suppose x is

-i
an element of H so that y G(t) (x) is in the domain of B and

-i -i -iconsider lira h (U (t+h t) (x) -x) lim h (G(t+h)T(h)G(t) (x)
h/0 h*0

x) lim h-l(G(t+h)T(h)G(t)-l(x) G(t+h)G(t)-l(x)) +
h*0

h-l(G(t+h)G(t)-l(x) G(t)G(t)-l(x)) lim G(t+h) (h-l(T(h)-I)(G(t)-I
-i h/0 -i

(x))) + lim h (g (t+h) g (t)) G(t)BG(t) (x) + g ’(t).
h/0 Y Y Y

-iHence x is in the domain of A(t) and A(t) (x) G(t)BG(t) (x) +

g ’(t).
Y

Theorem 2 provides a partial converse to Theorem i. The

thrust of the theorem is that a non-linear problem may, through
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the structure from Theorem l, be exchanged for a linear problem.

THEOREM 2: Suppose that {A(t)} is so that there is a
t >0

unique solution to v’(t) A(t)(v(t)), v(s) x for each point

x in the domain of A(s). Suppose also that there is a function

G with domain [0, and range in R(H,H) and a strongly continuous

semigroup T of continuous transformations on H with infinitesimal

generator B so that

i. if t > 0 and =E H, then T(t)(x)g D
B

ii. if t g [0, then G(t) (D) D
B A(t)

iii. if x D
B

and Yx [0, oo) H is defined by

y (t) G(t) (x) then y (t) A(t)G(t) (x) G(t)B(x) and
x x

iv. if t > s > 0, {IG(r) s < r _< t} is a bounded set.

Then if U is the evolutionsystem generated by A and t

-i
U(t,s) G(t)T(t-s)G(s)

PROOF: Suppose that t > s and that x e DA(s). By assumption,

there is a unique function v so that v’ (t) A(t) (v(t)) and

v(s) x. Also, U(t,s)(x) is defined to be v(t). Consider

-i
f [0, )+ H defined by f (t) G(t)T(t-s)G(s) (x).f (s) x.
x x x

-lII h-l( f (t+h) f (t)) A(t) (f (t)) II II h (G(t+h)r(t+h-s)G(s)
-I

x x x

G(t)T(t-s)G(s) (x)) A(t)G(t)r(t-s)G(s) (x)) II
(x)

Notice that A(t)(f (t)) makes sense since by assumption

x is in D and if t > s, R is a subset of D and
A(s) r(t-s) B

G(t)(D B) DA(t) From assumption iii. on the strong differenti-

-i
xability of G, and denoting T(t-s)G(s) by y the above norm

-i -i -i
can be written llh (G(t+h)r(t+h-s)G(s) (x) G(t)r(t-s)G(s) (x))-

(g ’(t) G(t)BT(t-s)G(s)-l(x)II _< fIG(t+h) (N-I(T(h) (T(t-s)G(s)
Y

T(t-s)G(s) (x)) G(t+h)(B(r(t-s)G(s) (x)) II +
-i -i -illh (G(t+h) (T(t-s)G(s) (x)) G(t+h) (B(T(t-s)G(s) (x))) g’ (t) II

+ II G(t+h)(Br(t-s)G(s)-l(x)) G(t)Br(t-s)G(s)-l(x))II

-i
(x))

The first term converges to 0 by the differentiability of T at
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-i
T(t-s)G(s) (x) and the boundedness of IG(r) r [t, t+m]}

the second converges to 0 by the strong differentiability of G at

-iT(t-s)G(s) (x) and the third converges to 0 by the strong contin-

-iuity of G at BT(t-s)G(s) (x) Thus f (t) eA(t) (f (t)) f (s)=x
X X X

and by the uniqueness of solutions U(t,s)(x)=v(t)=f (t)
X

G(t)r(t-s)G(s)-l(x)
In earlier work on nonlinear evolution systems (see for

instance Crandall [3]) the assumption of accretiveness on the argu-

ments of A provides existence of resolvents for A from which product

formulas for the evolution system can be constructed.

Theorem 3 shows that if the linear differentiability of the hypo-

thesis of Theorem 2 is strengthened, then the resolvent structure

for the underlying semigroup is carried forward to the evolution

system.

THEOREM 3: Suppose that G: [0, )/ R(H,H) is differentiable

in L(H,H) and that T is a strongly continuous semigroup of contin-

-iuous transformations on H with generator B so that If t>0, (l-tB)

is a Lipschitz transformation on H, and that there is a number M so

-ithat the Lipschitz norms for {(I tB)

set. Define U(t,s) to be G(t)T(t-s)G(s)

0 < t < M} is a bounded

-i
and let A denote the

infinitesimal generator for U. Then if t > O, there is k> 0 so that

if 0 < m < k, (I mA(t)) -I is a Lipschitz transformation with

domain H and Lipschitz norm no greater than

(IG(t) (I mB)-i IG( t)-I / (I mlG(t)

IG(t)-ll IG’ (t) ).

I(I mB)-i

PROOF

Initially note that the differentiability assumed for

Theorem 3 is in the norm topology of L(H,H), that is, if

t > O, G’(t) is in L(H,H). Hence, from Theorem i, A(t) can be

written as T(t)BG(t) -I + G’ (t)G(t) -I Pick x from H. For I mA(t)
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to be invertible with domain H there must be exactly one point y so

that (I mA(t))(y) x. For m> 0, define a function

Fm: H-H by Fm(p) G(t)(l mB)-l(mG(t)-iG ’(t)G(t)-l(p) + G(t)-l(x)). Given

c>0, let M denote an upper bound for {(I -nB) -I n __< c}.

II Fro(P) Fm(q) II __< mlG(t) I(I mB)-ll IG(t)-ll21G’(t)l P q

Thus m < min{(IG(t) M IG(t)-llmlG’(t) )-i c} implies that F is a strict
m

contraction and has a unique fixed point y.

Since y G(t)(I -mB)-l(mG(t)-lG’(t)G(t)-l(y)+(t)-l(x)), it follows that

(I mg)G(t)-l(y) mG(t)-lG ’(t)G(t)-l(y)+(t)-l(x),
G(t)-l(y) m(BG(t)-l(y) + G(t)-lG (t)G(t)-l(y)) G(t)-l(x), and

y m((G(t)BG(t)
-1 + G’(t)G(t)-l)(y)) x that is, (I mA(t))(y) x.

Reversing the calculations shows that any such point must be a fixed point of

-i
Fm. Thus y (I -mA(t)) (x).

-i -i
For Yl (I mA(t)) (xl) and Y2 (I mA(t)) (x2)

-i -i -i
II(I mA(t)) (xI) (I mA(t)) (x2) G(t)(l mB)

(mG(t)-iG ’(t)G(t)-l(yl) + G(t)-l(xl)) G(t)(l mB)

(mG(t)-lG ’(t)G(t)-l(y2) + G(t)-l(x2))II < IG(t)] I(l mB)

(mlG(t)-llm]G’(t)l flYI- Y2]I + IG(t)-ll xI x211 )"

Thus

I( I mB)-lllG(t) -I 2 IG,(t) )) x x
i 2

-i

-ii)/( I mIG(t)

3 OCCURRENCES.

There appear to be several possibilities for the application of the

evolution structure identified in the preceding theorems.

Example 1. In [7], Neuberger studied semigroups of Lipschitz transformations so

that if T is one of them, then there is c > 0 so that if x and y are elements

ct
of H, and t > 0, then T(t)(x) T(t)(y)II < e x y By taking

-ct
G(t) e I, Neuberger’s special evolution system which produced product

formulas for the semigroup can be seen to be an instance of the theory.

Example 2. Suppose that T is a semigroup of continuous transformations on H

with infinitesimal generator B and G is a group of continuous linear trans-
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formations on H with generator C. Then there is an evolution system U on H

with generator A so that B + C C A(O).

PROOF: Define U by U(t,s) G(t)-iT(t-s)G(s) -I. If x e D the hypothesis
B+C

-i
(0). Henceto Theorem i is satisfied and A(0)(x) G(O)BG(0) (x) + gG(O)_l(x

-iA(0)(x) B(x) + lim h (G(h)(x) x) B(x) + C(x).
h+0

Thus, even though such sums may fail to guarantee the generation of semigroups

(see Chernoff [2]), they must always support the generation of globally defined

evolutions.

Generation theories for evolution systems typically require that DAs < t (s)
-i

be dense in C and that (I mA(t)) be Lipschitz with domain C. These

restrictions need not apply for the theory discussed in Theorem i to be viable.

Example 3. Let H be the Banach space of bounded uniformly continuous functions

from [0, oo) into R with for f e H, fll lub {If(x) x > 0 }. Define A(s) by

(f))(x) I f’(x) if x _< s
(A(s)

0 if x > s

By taking T to be the semigroup generated by {(f,g) f s H, g s H, and g f’}

and G defined by

I f(x) if x > t
(G(t) (f)) (x)

2f(x) f(t) if x < t

-i
U, defined by U(t,s) G(t)T(t-s)G(s) has generator A. Notice that the two

conditions on the domain of A(s) are provided separately by the differentiability

of T and G respectively. Here U(t,s) is defined globally although

0 < a < bDA(a)
have range H.

is nowhere dense in any neighborhood and I mA(t) does not

Even when existing theories cover a given evolution system, the structures

studied here may provide alternative computation possibilities.

Example 4. Consider the ordinary differential equation

y’(t) A/((Bt + C)y(t)) +-Dy(t)/(Bt + C), y(s) x, D/B _I_
2

2A typical solution might involve solving for y in the associated linear equation.

However, by letting G solve the linear term, a semigroup generator can be found

by purely algebraic means from which U(t,s) G(t)T(t-s)G(s) -I can be built to
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solve the original equation. Here the forms in which the two methods give the

solution are computationally different.

Example 5. Suppose that A is a linear group generator and that C is a continuous

function from H into the compact subset K of H. Consider, for x e H, the

problem

y’(t) (A + C)(y(t)), y(0) x

which can be solved by the method of convergence of approximate solutions as

employed by Martin[6].

Using the approach suggested in the theorems, let G denote the group gener-

ated by A and look for a function f from [0, d] into H so that

y {(t,G(t)(f(t))) 0 < t < d} solves the problem. For such a function to be

a solution it must be true that f’(t) G(t)-iCG(t)(f(t)). Letting

X C([0, m),H), this in turn translates into a fixed point problem for the

function F defined by, for k e X,

(F(k))(t) x + G(j) CG(j)k
0-i

and G(j) CG(j) is a compact map on [O,d] xH. If f is a fixed point for F, then

-i
lim h (G(t+h)(f(t+h)) G(t)(f(t)) lim h-l(G(h)G(t)(f(t)) G(t)(f(t)) +
h->O h/0

-i
G(t+h)(h (f(t+h) f(t) AG(t)(f(t)) + G(t)(f’(t)) AG(t)(f(t)) +

G(t)G(t)-iCG(t)(f(t)). Hence y’(t) (A + C)(y(t)) and y(0) x. Notice that

the burden for solution is shifted from evaluating the convergence of approximate

solutions to finding a fixed point associated with a compact map.

4. 0UESTIONS.

In Example 4, when G is produced by solving the linear problem

u’(t) -Du(t)/(Bt+c), finding the appropriate associated semigroup generator

depends on finding a function f so that A/((Bt + C)x) cD/Bf(c-D/B(Bt + C)x).

In this case f(p) A/p works. Any systematic application for the evolution

system in this paper must include an analysis of the conditions under which a

-i
family {B(t)} can be algebraically resolved to the form {G(t)fG(t) }t < 0"

t <0

Theorem i identifies a closed form for the evolution generator in case G is

-I
a linear family. Can other forms of the generator for G(t)T(t-s)G(s) be

identified when G is not linear?
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