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i. INTRODUCTION.

A result of continuing interest in fixed point theory is one due to Kirk [6].

This states that a non-expansive self-mapping of bounded, closed and convex sub-

set possessing normal structure in a reflexive Banach space has a fixed point.

The interest in this result has been further enhanced due to simultaneous and in-

dependent appearance of results of Browder [2] and GBhde [5] which are essentially

special cases of the result of Kirk. Recently Kannan [6] and iri6 [4] have obtain-

ed results in basically the same spirit by suitably modifying the non-expansive

condition on the mapping and the condition of normal structure on the underlying

set. In this paper we give a fixed point result for multi-mappings (Theorem 2.1)

and extend the results of Kannam [6] and Ciric [3] to a pair of mappings (Theorems

3.1 and 3.2). This enables us to establish convergence of Ishikawa iterates (cf.

[9]) for a pair of mappings.
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2. A FIXED POINT THEOREM FOR FULTI-IAPPINGS.

Let K be a closed, bounded and convex subset of a Banach space X. For x . X,

let (x;K) denote sup lx-kll k K} and let (K) genote the diameter of K.

Recall that a point x K is called a non-diametral point of K if (x’K) < (K)

and that K is said to have normal structure whenever given any closed bounded con-

vex subset C of K with more than one point, there exists a non-diametral x e C.

It is well-knocn (cf. [A]) that a compact convex subset of an arbitrary Banach

space and a closed, bounded and convex subset of a uniformly convex Banach space

have normal structure. With K as before, let r(K) denote the radius of

K inf f(x K) x e K} and let K denote the Chebyshev centre of
C

K x e K r(K) (x,K) }. It is well known (cf. Opial [8]) that if K is

n,n-empry weakly ,ompa,-t ,,,nvex ubset ,f 8ana’h =pa. X, then K is n,nempty

I,.ed onvex stb.qet t K and, turtht-rmre tI K has normat structure, then

(K < (K) (whenever 6(K) > 0). Let 2
K
denote the collection of all non-empty

C

Ksubsets of K and, tot A,B 2 let ;.(A,B denet sup a-b, a A, b B}

Fheor,’m ..I. Let K be a nonempty weakly ompat cenvc subset of the Banach

K
space X. Assume K has normal structure. Let T:K 2 be a mapping satisfying:

for each closed convex subset F of K invariant under T, there exists some

a(F), 0 < a(F) < i, such that

5(Tx,Ty) < max (x,F), (F) 5(F)

for each x, y F.

Then T has a fixed point x satisfying Tx {x }.
O O O

Proof. We imitate in parts the proof of Kirk’s theorem. Let denote the

collection of non-empty closed convex subsets C of K that are left invariant by

T(i.e., TC c C, where TC u[Tc c e C "). Order by set-inclusion. By weak

compactness of K, we can apply Zorn’s lemma to get a minimal element M. It suf-

fices to show that M is a singleton. Suppose that M contains more than one ele-

ment. By the definition of normal structure there exists x M such that
O

sup lx-YI[ Y e )I 5(x ,M)< 5(M),
O O

Hence g(x ,M) < aI(M) (M) for some
O

0 <a < 1.
1
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If 6(Tx, Ty) S 6(x,M) for all x, y M, let M6 {x E M: (x,:.[) -< i 6(M)}.

Otherwise, by hypothesis there exists (M), 0 < (M) < i, such that

6(Tx, Ty) < e 6(M) for some x, y M.

Let B max {a, aI) and M6 (x M: 6(x,M) _< B6(M)).

As Xo M6, M6 is nonempty. Evidently, M6 is convex. Since x - 6(x,M) is contin-

uous, M6 is closed.

Let x M6
6(Tx, Ty) < max {(x,M),e 6(M)}

< 8 6(M) for y e M.

Hence T(M) is contained in a closed ball of arbitrary centre in Tx and radius

8(M). By the minimality of M, if m e Tx, then M c U( m 8(M)) (the closed ball

of centre m and radius 8(M)), whence m M and T(M) c M. But

(M6) < 86(M) < (M) which contradicts the minimality of M. Thus M is a singleton

and this completes the proof.

Corollary 2.2. Let K be a nonempty weakly compact convex subset of the Banach

space X. Assume K has normal structure. Let T be a mapping of K into itself which

satisfies: for each closed convex subset F of K invariant under T there exists

some (F), 0 < e(F) < i, such that

max 6(x,F), e(F)

for each x, y F. Then T has a fixed point.

Corollary 2.3. Let K be a nonempty weakly compact convex subset of the Banach

space X. Assume K has normal structure. Let T be a mapping of K into itself which

satisfies: for each closed convex subset F of K invariant under T there exists

some e(F), 0 < e(F) < i, such that

max lx-yll, r(F), a (F)

for each x, y F. Then T has a fixed point.

Remark. The preceeding results generalize the results of Kirk [7] and Browder

[2].



116 D.V. PAl AND P. VEERAMANI

3. COMMON FIXED POINTS OF MAPPINGS.

Theorem 3.1. Let K be a weakly compact convex subset of the Banach space X.

Let TI, T
2
be two mappings of K into itself satisfying:

(i) lrlx r2Yll <_ max (I Ix-rlxl I+I IY-T2Yl I)/2,

(I Ix-TroY [+I lY-rlxl I)/3,

(I !x-Yl I+l Ix-rlxl +:Iy-Tmyl I)/3}

for each x, y e K,

(2)

(3)

TIC C if and only if T2C C for each closed subset C of K;

either zSPc lZ-TlZll _< (C)/2,

or sp Iz-T2zll < (C)/2z C

holds for each closed convex subset C of K invariant under TI
and T2.

Then there exists a unique common fixed point of TI
and T2.

Proof. Let denote the family of all non-empty closed convex subsets of K,

each of which is mapped into itself by T
I

and T2. Ordering by set-inclusion, by

weak compactness of K and Zorn’s lemma, we obtain a minimal element F of K. With-

out loss of generality, assume that

zSPF lz-rmzll (F)/2.

Let x e F Since (F)/2 < r(f) we obtain using (i) that IITlX-r2Yll < r(F).

(y e F). This gives that T2(F) c U(TIX r(F)) U, whence T2(F n U) F n U and

by hypotheses (2) TI(F U) c F n U. By the minimality of F, we obtain F c U.

This gives (TIX,F) r(F), whence TlX e Ft. Therefore, Tl(Fc) Fc and by

hypothesis (2) T2(Fc) F We now show that if F contains more than one element,
C

then F is a proper subset of F. Assume the contrary that F F. Since
C C

(x,F) r(F) for each x F, we obtain (F) r(F) (x,F), (x e F). Again

from (I), we get

lrlx r2Yll <_ max {3 (F)/4, ((F) + (F))/3,

((F) + (F) + (F)/2)/3}

56 (F)/6.
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The same argument as before yields (TIX,F) <_ 5(F)/6 < (F), which is a contradiction.

Consequently, if F contains more than one element, then F is a proper subset of F.
c

But this in view of above contradicts the minimality of F. Hence F contains exactly

one element, say, xO, whence TlX0 x
0 T2xO. Assume there exists another element

Y0 e K such that TlY0 YO T2Yo" Then using (I), we obtain

2ITlX0 T2YoII <_ If TlX0 T2Y011
whence x

0 TlX0 T2Y0 Y0"

THEOREM 3.2. Let K be a weakly compact convex subset of the Banach space X.

Assume K has normal structure. Let TI, T
2
be mappings of K into itself satisfying:

(i) lTlX TmYll <_ max {(I x TlXll + IY-TmYl I)/2,

(I Ix-rmYll + I!Y-TlXl I)/2,

(I Ix-yl I+I IX-TlXl + Iy-Tmyl I)/3}

for each x,y e K,

(2)

(3)

TIC c C if and only if T2C c C for each closed convex subset C of K,

either sup lz TlZll <_ r(D),
z e D

or sup lz T2zll <_ r(D)
z e D

holds for each closed convex subset D of K invariant under TI and T2.

Then there exists a unique common fixed point of TI and T2.

PROOF. Let be as in Theorem 3.1. Exactly as in Theorem 3.1., has a

minimal element F. Without loss of generality, assume that sup lz-T2zll <_ r(F).
z e F

Let x eF Then using (i) we obtain
c

lTlX T2Yll <_ r(F). (y e F)

This gives exactly as in Theorem 3.1 that Tl(F)c c F and T2(Fc)CF Since K has
c c

normal structure, one has (F < (F) if K contains more than one element, which
c

contradicts the minimality of F. Thus F contains Drecisely one element, which is

the unique common fixed point of TI and T
2

as in Theorem 3.1.

REMARK. One can replace condition (i) of Theorem 3.2 by

(i) lrlx T2Yll <_max {I Ix-Yll, (I IX-TlXll + IY-TmYlI)/2
(I Ix-T2Yl + IY-TlXl I)/3, ([ Ix-Yl I+I IX-TlXl I+I IY-T2Yl I)/3}
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This also yields the existence of a common fixed point of T and T2. However,

it need not be unique.

THEOREM 3.3. Let K be a weakly compact convex subset of the Banach space X.

Assume K has normal structure. Let T I, T2 be mappings of K into itself satisfying

(2) and (3) of the preceding theorem and,

(i) lTlX T2Yll < max {I Ix-Yll, lX-TlXll, Ix-TIYlI, lx-T2xll, Ix-T2YlI}"
Then there exists a common fixed point of TI and T2.

The proof of the above theorem is similar to that of Theorem 3.2 and hence it

is omitted.

4. ISHIKAWA ITERATION FOR COMMON FIXED POINTS.

A uniformly convex Banach space is reflexive. A bounded, closed and convex

subset of a uniformly convex Banach space is therefore weakly compact; als% it

has normal structure. Hence Theorems 2.1, 3.2 and 3.3 can be particularized to

such a setting. Rhoades [9] has extended a result of iri (cf. [3], Theorem 2)

to a wider class of transformations by using Ishikawa iterative scheme. With a

suitable modification of arguments, this extends to a pair of mappings of the type

as in Theorem 3.2.

THEOREM 4.1. Let K be a non-empty closed bounded and convex subset of a uni-

formly convex Banach space X. Let TI, T2 be mappings of K into itself satisfying

(i), (2) and (3) of Theorem 3.2. Let the sequence {x of iterates be defined by
n

(4) x0 e K

(5) Yn (i 8n)Xn + 8n T
1

x
n

n _> 0

(6) Xn+I (i -a )x + a T2 Yn n > 0
n n n

where {e }, {B satisfy (i) 0 < < B < 1 for all n,
n n n n

(ii) an(l - and (iii) lim B < I Then {x converges to the
n n n

n
unique common fixed point of T

1
and T2.

PROOF. The existence of the unique common fixed point of T
1

and T2
results

from Theorem 3.2. Let the unique common fixed point be v. From (1)

lTlXn -vl[ < ]Ix
n vll
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and

Following exactly the same lines as in the proof of Theorem i of [9] we obtain

subsequences Ynk, x of Yn’ xn
k n

respectively such that

(7) lim II T
2 II 0

k xnk Ynk
we show that

(8) lim IIxnk TI xnkll 0

It would be sufficient, with (7), to show that limk lTlXnk- T2Ynkll O.

For any integer n, from

we obrain

lTlxn T2Yn II < (I Ixn TlXnll + flYn T2Ynil)/2

(9)

It follows from

lTlxn T2Ynll < (2 Bn) II x
n T2Ynll/(l 8n).

that

lTlxn T2Ynl] < (I Ixn T2Ynll + flYn TlXn[ I)/3

(i0)

From

lTlXn T2Yn II _< (2 6n) Ixn T2Yn ]I/ (2 + 8n

we obtain

lTlXn T2Ynl < (I Ixn Ynll + fixn Tlxnl I+I IYn-T2Ynl I/3

(ii) lTxn T2Yn If _< lxn T2Yn II / (i 6n
From (9) (ii) we obtain

Therefore,

T2Ynl _< 211Xn T2Ynll / (I 6n

and (7)

liT II <_ 2 IIxiXn
k

T2yn
k nk

T2Yn
k

implies limk ITlXn
k T2Ynkll 0,

whence

lim llxn II 0
k TlXnk

Now let us prove that this implies that
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ko

This follows easily from

x TIXn
k

T
2Xnk

II + max{(l Ixnk TlXnkl I+l Ixnk-T2Xnl I)/2,< xnk TlXnk
x T2Xnkll + lx TlXnklI)/3

(!1 %1I+ Ilx !I+ Ii !!)/3}.x x TlXn
k xnk T2Xn

k

which tends to 0 as k + since

IlXnk II +o .TlXnk
Also II II <_ II II + llT2Xn- rlXn.lT

iXn
k

T
iXn TIXn

k
T2Xn

k

From (i) of Theorem 3.2,

]TlXn r2Xnkl < max([IIXn TlXnl + lxnk T x 1{]/2
2%

[II II + llxXnZ
T
2Xn

k nk
TIXn

[I IXn. x%ii + II II + I1=% T2x%] 1]/3Xn TlXn
If

I! T2Xnkll < Ill !1 + IIx 111/3, thenTlXn% Xn T2Xn
k

n
k TlXn

3 !1 T2Xnkl] < IIx T x II + IIT.x ilTlXn n i n n T2Xn
k

+ lXnk T2x%ll + fiT x II2 nk TlXn
which implies

() II II <_II II+ II II.TIXn T2Xn
k

x
n

T
iXn xnk T

2Xn
k

If

II -T ll![llx -= ll+ll II+ II II]/3,T
iXn 2Xn

k nZ nk
x
n

T
iXn xnk T2Xn

k

it follows, in a similar manner, that (II) holds. Therefore, in all cases, (II)

is satisfied.
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Therefore,

II II < Irlxnk- x II + II x TT
iXn

k
T1Xn n

k
n
k

2Xn
k

x l+llh II,II +II n TlXn -T2Xnk
which tends to 0 as k- . Therefore {TlXnk
converges, say, to u. Consequently

} is a Cauchy sequence and hence it

TlXnklim xnk lim u.

Also,

lu-T2ull < lU-Xnkll + Ixnk-TIxnkll +fITIxnk-T2II < IU-Xnk Xn
k IXn

k

+ max {(I IXnk T].Xnkl + I1, T2ul I)/2,

(I I(xnk T2ull + lu TlXnkl I)/3

-u II + Ilu- T2ull)/:}(llxn !1 + II
nk

Tlxnk
Taking the limit as k - =o, we obtain lu T2ull O. Therefore, u T2u
Now,

Ilu- T].ul <_ I1- T2uli + II T2u- Tzull
<_ mx {(llu :pli + lu Teul I)/2

(I lu T2il + lu TlUl I)/3

(llu- !1 + I1- Tlull + Iiu

This implies lu T].ull 0 Therefore, u Tlu
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