ON SOME FIXED POINT THEOREMS IN BANACH SPACES

D.V. PAI and P. VEERAMANI

Department of Mathematics, Indian Institute of Technology Powai, Bombay - 400076, India

(Received March 28, 1980, and in revised form December 22, 1980)

<u>ASTRACT</u>. In this paper, some fixed point theorems are proved for multi-mappings as well as a pair of mappings. These extend certain known results due to Kirk, Browder, Kanna, Ĉirić and Rhoades.

<u>KEY WORDS AND PHRASES</u>. Normal structure, Multi-mapping, Uniformly convex Banach Space.

1980 MATHEMATICE SUBJECT CLASSIFICATION CODES. 47H10, 54E15, 46A05.

1. INTRODUCTION.

A result of continuing interest in fixed point theory is one due to Kirk [6]. This states that a non-expansive self-mapping of bounded, closed and convex subset possessing normal structure in a reflexive Banach space has a fixed point. The interest in this result has been further enhanced due to simultaneous and independent appearance of results of Browder [2] and Göhde [5] which are essentially special cases of the result of Kirk. Recently Kannan [6] and Ćirić [2] have obtained results in basically the same spirit by suitably modifying the non-expansive condition on the mapping and the condition of normal structure on the underlying set. In this paper we give a fixed point result for multi-mappings (Theorem 2.1) and extend the results of Kannan [6] and Ciric [3] to a pair of mappings (Theorems 3.1 and 3.2). This enables us to establish convergence of Ishikawa iterates (cf. [9]) for a pair of mappings.

2. A FIXED POINT THEOREM FOR MULTI-MAPPINGS.

Let K be a closed, bounded and convex subset of a Banach space X. For x \in X, let $\delta(x;K)$ denote sup { $||x-k|| : k \in K$ } and let $\delta(K)$ denote the diameter of K. Recall that a point x \in K is called a <u>non-diametral</u> point of K if $\delta(x;K) < \delta(K)$ and that K is said to have <u>normal structure</u> whenever given any closed bounded convex subset C of K with more than one point, there exists a non-diametral x \in C. It is well-known (cf. [4]) that a compact convex subset of an arbitrary Banach space and a closed, bounded and convex subset of a uniformly convex Banach space have normal structure. With K as before, let r(K) denote the radius of K : inf { $\delta(x,K) : x \in K$ } and let K_c denote the <u>Chebyshev centre</u> of K : { $x \in K : r(K) = \delta(x,K)$ }. It is well known (cf. Opial [8]) that if K is a non-empty weakly compact convex subset of a Banach space X, then K is nonempty closed convex subset of K and, turthermore if K has normal structure, then $\delta(K_c) < \delta(K)$ (whenever $\delta(K) > 0$). Let 2^K denote the collection of all non-empty subsets of K and, tor A, B $\neq 2^K$ let $\delta(A,B)$ denote sup $|x| = a-b_i$: $a - A_i$, $b \in B$ }.

Theorem ...1. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let $T:K \rightarrow 2^{K}$ be a mapping satisfying: for each closed convex subset F of K invariant under T, there exists some $\alpha(F)$, $0 \leq \alpha(F) \leq 1$, such that

 $\delta(Tx,Ty) < \max \{ \delta(x,F), \alpha(F) \delta(F) \}$

for each x, y ε F.

Then T has a fixed point x satisfying $Tx = \{x_0\}$.

Proof. We imitate in parts the proof of Kirk's theorem. Let \mathfrak{F} denote the collection of non-empty closed convex subsets C of K that are left invariant by $T(i.e., TC \subset C, where TC = \cup \{Tc : c \in C \})$. Order \mathfrak{F} by set-inclusion. By weak compactness of K, we can apply Zorn's lemma to get a minimal element M. It suffices to show that M is a singleton. Suppose that M contains more than one element. By the definition of normal structure there exists $x_{\alpha} \in M$ such that

 $\sup \{ ||\mathbf{x}_{0} - \mathbf{y}|| : \mathbf{y} \in \mathbf{M} \} = \delta(\mathbf{x}_{0}, \mathbf{M}) < \delta(\mathbf{M}),$

Hence $\delta(x_0, M) \leq \alpha_1(M) \delta(M)$ for some $\alpha_1, 0 < \alpha_1 < 1$.

If $\delta(Tx, Ty) \leq \delta(x, M)$ for all x, y $\in M$, let $M_{\delta} = \{x \in M: \delta(x, M) \leq \alpha_1 \delta(M)\}$. Otherwise, by hypothesis there exists $\alpha(M)$, $0 \leq \alpha(M) < 1$, such that $\delta(Tx, Ty) \leq \alpha \delta(M)$ for some x, y $\in M$. Let $\beta = \max \{\alpha, \alpha_1\}$ and $M_{\delta} = \{x \in M: \delta(x, M) \leq \beta \delta(M)\}$.

As $x_0 \in M_{\delta}$, M_{δ} is nonempty. Evidently, M_{δ} is convex. Since $x \neq \delta(x,M)$ is continuous, M_{δ} is closed.

$$\begin{split} \delta(\mathrm{Tx}, \mathrm{Ty}) &\leq \max \{\delta(\mathrm{x}, \mathrm{M}), \alpha \, \delta(\mathrm{M})\} \\ &\leq \beta \quad \delta(\mathrm{M}) \text{ for } \mathrm{y} \in \mathrm{M}. \end{split}$$

Hence T(M) is contained in a closed ball of arbitrary centre in Tx and radius $\beta\delta(M)$. By the minimality of M, if m ϵ Tx, then M \subset U(m : $\beta\delta(M)$) (the closed ball of centre m and radius $\beta\delta(M)$), whence m ϵ M_{δ} and T(M_{δ}) \subset M_{δ}. But $\delta(M_{\delta}) \leq \beta\delta(M) < \delta(M)$ which contradicts the minimality of M. Thus M is a singleton and this completes the proof.

Corollary 2.2. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T be a mapping of K into itself which satisfies: for each closed convex subset F of K invariant under T there exists some $\alpha(F)$, $0 \leq \alpha(F) < 1$, such that

 $||Tx-Ty|| \leq \max \{ \delta(x,F), \alpha \delta(F) \}$

for each x, y ε F. Then T has a fixed point.

Corollary 2.3. Let K be a nonempty weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T be a mapping of K into itself which satisfies: for each closed convex subset F of K invariant under T there exists some $\alpha(F)$, $0 \leq \alpha(F) < 1$, such that

 $||Tx-Ty|| \leq \max \{ ||x-y||, r(F), \alpha \delta(F) \}$

for each x, y ε F. Then T has a fixed point.

Remark. The preceeding results generalize the results of Kirk [7] and Browder [2].

3. COMMON FIXED POINTS OF MAPPINGS.

Theorem 3.1. Let K be a weakly compact convex subset of the Banach space X. Let T_1 , T_2 be two mappings of K into itself satisfying:

(1) $||T_1x - T_2y|| \le \max \{ (||x-T_1x||+||y-T_2y||)/2, (||x-T_2y||+||y-T_1x||)/3, (||x-y||+||x-T_1x||+||y-T_2y||)/3 \}$

for each x, $y \in K$,

or

(2)
$$T_1C \subset C$$
 if and only if $T_2C \subset C$ for each closed subset C of K;

(3) either
$$\sup_{z \in C} ||z-T_1z|| \leq \delta(C)/2$$
,

 $\sup_{z \in C} ||z-T_2z|| \leq \delta(C)/2$

holds for each closed convex subset C of K invariant under ${\rm T}_1$ and ${\rm T}_2.$ Then there exists a unique common fixed point of ${\rm T}_1$ and ${\rm T}_2.$

Proof. Let \mathfrak{F} denote the family of all non-empty closed convex subsets of K, each of which is mapped into itself by T_1 and T_2 . Ordering \mathfrak{F} by set-inclusion, by weak compactness of K and Zorn's lemma, we obtain a minimal element F of K. Without loss of generality, assume that

$$\sup_{z \in F} \left| \left| z - T_2^z \right| \right| \leq \delta(F)/2.$$

Let $x \in F_c$. Since $\delta(F)/2 \leq r(f)$, we obtain using (1) that $||T_1x-T_2y|| \leq r(F)$. ($y \in F$). This gives that $T_2(F) \in U(T_1x : r(F)) = U$, whence $T_2(F \cap U) \in F \cap U$ and by hypotheses (2) $T_1(F \cap U) \in F \cap U$. By the minimality of F, we obtain $F \in U$. This gives $\delta(T_1x,F) = r(F)$, whence $T_1x \in F_c$. Therefore, $T_1(F_c) \in F_c$ and by hypothesis (2) $T_2(F_c) \in F_c$. We now show that if F contains more than one element, then F_c is a proper subset of F. Assume the contrary that $F_c = F$. Since $\delta(x,F) = r(F)$ for each $x \in F$, we obtain $\delta(F) = r(F) = \delta(x,F)$, ($x \in F$). Again from (1), we get

> $||T_1 x - T_2 y|| \le \max \{3 \ \delta(F)/4, \ (\delta(F) + \delta(F))/3, \\ (\delta(F) + \delta(F) + \delta(F)/2)/3 \}$ = 5\delta(F)/6.

The same argument as before yields $\delta(T_1 \mathbf{x}, F) \leq 5\delta(F)/6 < \delta(F)$, which is a contradiction. Consequently, if F contains more than one element, then F_c is a proper subset of F. But this in view of above contradicts the minimality of F. Hence F contains exactly one element, say, x_0 , whence $T_1 x_0 = x_0 = T_2 x_0$. Assume there exists another element $y_0 \in K$ such that $T_1 y_0 = y_0 = T_2 y_0$. Then using (1), we obtain

$$||T_1x_0 - T_2y_0|| \le \frac{2}{3} || T_1x_0 - T_2y_0||$$
,
 $x_0 = T_1x_0 = T_2y_0 = y_0$.

whence

THEOREM 3.2. Let K be a weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T_1 , T_2 be mappings of K into itself satisfying: (1) $||T_1x - T_2y|| \le \max \{(||x - T_1x|| + ||y - T_2y||)/2,$ $(||x - T_2y|| + ||y - T_1x||)/2,$ $(||x - y|| + ||x - T_1x|| + ||y - T_2y||)/3\}$

for each x,y & K,

(2)
$$T_1 C \subset C$$
 if and only if $T_2 C \subset C$ for each closed convex subset C of K,
(3) either $\sup_{z \in D} ||z - T_1 z|| \leq r(D)$,

or $\sup_{z \in D} ||z - T_2 z|| \leq r(D)$

holds for each closed convex subset D of K invariant under $\rm T_1$ and $\rm T_2.$ Then there exists a unique common fixed point of $\rm T_1$ and $\rm T_2.$

PROOF. Let \mathfrak{F} be as in Theorem 3.1. Exactly as in Theorem 3.1., \mathfrak{F} has a minimal element F. Without loss of generality, assume that $\sup_{z \in F} ||z-T_2z|| \leq r(F)$. Let x εF_c . Then using (1) we obtain

$$||T_1 x - T_2 y|| \leq r(F).$$
 (y ε F)

This gives exactly as in Theorem 3.1 that $T_1(F_c) \subseteq F_c$ and $T_2(F_c) \subseteq F_c$. Since K has normal structure, one has $\delta(F_c) < \delta(F)$ if K contains more than one element, which contradicts the minimality of F. Thus F contains precisely one element, which is the unique common fixed point of T_1 and T_2 as in Theorem 3.1.

REMARK. One can replace condition (1) of Theorem 3.2 by

(1)
$$||T_1x - T_2y|| \le \max \{||x-y||, (||x-T_1x|| + ||y-T_2y||)/2, (||x-T_2y|| + ||y-T_1x||)/3, (||x-y||+||x-T_1x||+||y-T_2y||)/3 \}.$$

This also yields the existence of a common fixed point of T_1 and T_2 . However, it need not be unique.

THEOREM 3.3. Let K be a weakly compact convex subset of the Banach space X. Assume K has normal structure. Let T_1 , T_2 be mappings of K into itself satisfying (2) and (3) of the preceding theorem and,

(1) $||T_1x - T_2y|| \le \max \{||x-y||, ||x-T_1x||, ||x-T_1y||, ||x-T_2x||, ||x-T_2y||\}.$

Then there exists a common fixed point of ${\rm T}^{}_1$ and ${\rm T}^{}_2.$

The proof of the above theorem is similar to that of Theorem 3.2 and hence it is omitted.

4. ISHIKAWA ITERATION FOR COMMON FIXED POINTS.

A uniformly convex Banach space is reflexive. A bounded, closed and convex subset of a uniformly convex Banach space is therefore weakly compact; also, it has normal structure. Hence Theorems 2.1, 3.2 and 3.3 can be particularized to such a setting. Rhoades [9] has extended a result of Ćirić (cf. [3], Theorem 2) to a wider class of transformations by using Ishikawa iterative scheme. With a suitable modification of arguments, this extends to a pair of mappings of the type as in Theorem 3.2.

THEOREM 4.1. Let K be a non-empty closed bounded and convex subset of a uniformly convex Banach space X. Let T_1 , T_2 be mappings of K into itself satisfying (1), (2) and (3) of Theorem 3.2. Let the sequence $\{x_n\}$ of iterates be defined by

(5)
$$y_n = (1 - \beta_n) x_n + \beta_n T_1 x_n, \qquad n \ge 0$$
,

(6)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_2 y_n$$
, $n \ge 0$,

where $\{\alpha_n\}, \{\beta_n\}$ satisfy (i) $0 \leq \alpha_n, \leq \beta_n \leq 1$ for all n, (ii) $\sum_n \alpha_n (1 - \alpha_n) = \infty$ and , (iii) $\lim_{n \to \infty} \beta_n = \beta < 1$. Then $\{x_n\}$ converges to the unique common fixed point of T_1 and T_2 .

PROOF. The existence of the unique common fixed point of T_1 and T_2 results from Theorem 3.2. Let the unique common fixed point be v. From (1)

$$||T_1x_n - v|| \le ||x_n - v||$$

118

and

$$||\mathbf{T}_{2}\mathbf{x}_{n} - \mathbf{v}|| \leq ||\mathbf{x}_{n} - \mathbf{v}||$$

Following exactly the same lines as in the proof of Theorem 1 of [9] we obtain subsequences y_{n_k} , x_n of y_n , x_n respectively such that

(7)
$$\lim_{k} ||x_{n_{k}} - T_{2}y_{n_{k}}|| = 0$$

we show that

(8)
$$\lim ||x_{n_k} - T_1 x_{n_k}|| = 0.$$

It would be sufficient, with (7), to show that $\lim_{k} ||T_1x_k - T_2y_k|| = 0$.

For any integer n, from

$$||T_1x_n - T_2y_n|| \le (||x_n - T_1x_n|| + ||y_n - T_2y_n||)/2$$
,

we obtain

(9)
$$||T_1x_n - T_2y_n|| \le (2 - \beta_n)||x_n - T_2y_n||/(1 - \beta_n).$$

It follows from

$$||\mathbf{T}_{1}\mathbf{x}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}|| \le (||\mathbf{x}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}|| + ||\mathbf{y}_{n} - \mathbf{T}_{1}\mathbf{x}_{n}||)/3$$
,

that

(10)
$$||T_1x_n - T_2y_n|| \leq (2 - \beta_n)||x_n - T_2y_n||/(2 + \beta_n).$$

From

$$||\mathbf{T}_{1}\mathbf{x}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}|| \le (||\mathbf{x}_{n} - \mathbf{y}_{n}|| + ||\mathbf{x}_{n} - \mathbf{T}_{1}\mathbf{x}_{n}|| + ||\mathbf{y}_{n} - \mathbf{T}_{2}\mathbf{y}_{n}||)/3$$

we obtain

(11)
$$||T_1x_n - T_2y_n|| \le ||x_n - T_2y_n|| / (1 - \beta_n)$$
.

From (9) - (11) we obtain

$$||T_1x_n - T_2y_n|| \le 2||x_n - T_2y_n|| / (1 - \beta_n)$$
.

Therefore,

$$||T_{1}x_{n_{k}} - T_{2}y_{n_{k}}|| \leq 2 ||x_{n_{k}} - T_{2}y_{n_{k}}||/(1 - \beta_{n_{k}})$$

and (7) implies $\lim_{k} ||T_{1}x_{n_{k}} - T_{2}y_{n_{k}}|| = 0$,

whence

$$\lim_{k} ||x_{n_{k}} - T_{1}x_{n_{k}}|| = 0 ,$$

Now let us prove that this implies that

$$\lim_{k\to\infty} ||\mathbf{x}_{n_k} - \mathbf{T}_2 \mathbf{x}_{n_k}|| = 0.$$

This follows easily from

$$\begin{aligned} ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| &\leq ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + ||\mathbf{T}_{1}\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \\ &\leq ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + \max\{(||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n}||)/2, \\ &\qquad (||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}||)/3, \\ &\qquad (||\mathbf{x}_{n_{k}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||)/3, \end{aligned}$$

which tends to 0 as $k \rightarrow \infty$ since

$$||\mathbf{x}_{n_k} - \mathbf{T}_1 \mathbf{x}_{n_k}|| \rightarrow 0 \text{ as } k \rightarrow \infty$$
.

Also $||T_1x_{n_k} - T_1x_{n_l}|| \le ||T_1x_{n_k} - T_2x_{n_k}|| + ||T_2x_{n_k} - T_1x_{n_l}||$

From (1) of Theorem 3.2,

$$\begin{split} ||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| &\leq \max\{[\|\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}\|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||]/2 ,\\ [||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}||]/3 ,\\ [||\mathbf{x}_{n_{\ell}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||]/3 . \end{split}$$

If

$$\begin{split} ||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| &\leq [||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}||]/3, \text{ then} \\ 3 ||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| &\leq ||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| + ||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \\ + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{T}_{2}\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| , \end{split}$$

which implies

(11)
$$||T_1x_{n_{\ell}} - T_2x_{n_{k}}|| \le ||x_{n_{\ell}} - T_1x_{n_{\ell}}|| + ||x_{n_{k}} - T_2x_{n_{k}}||.$$

$$||\mathbf{T}_{1}\mathbf{x}_{n_{\ell}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| \leq [||\mathbf{x}_{n_{\ell}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{\ell}} - \mathbf{T}_{1}\mathbf{x}_{n_{\ell}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||]/3 ,$$

it follows, in a similar manner, that (11) holds. Therefore, in all cases, (11) is satisfied.

Therefore,

$$||\mathbf{T}_{1}\mathbf{x}_{n_{k}} - \mathbf{T}_{1}\mathbf{x}_{n_{l}}|| \leq ||\mathbf{T}_{1}\mathbf{x}_{n_{k}} - \mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}|| + ||\mathbf{x}_{n_{l}} - \mathbf{T}_{1}\mathbf{x}_{n_{l}}|| + ||\mathbf{x}_{n_{k}} - \mathbf{T}_{2}\mathbf{x}_{n_{k}}||,$$

which tends to 0 as $k \neq \infty$. Therefore $\{\mathbf{T}_{1}\mathbf{x}_{n_{k}}\}$ is a Cauchy sequence and hence it
converges, say, to u. Consequently

$$\lim_{n_k} x_n = \lim_{k} T_1 x_n = u.$$

Also,

$$\begin{split} ||u-T_{2}u|| &\leq ||u-x_{n_{k}}|| + ||x_{n_{k}}^{-T_{1}}x_{n_{k}}^{-}|| + ||T_{1}x_{n_{k}}^{-}-T_{2}u|| \leq ||u-x_{n_{k}}^{-}|| + ||x_{n_{k}}^{-}-T_{1}x_{n_{k}}^{-}|| \\ &+ \max \{ (||x_{n_{k}}^{-}-T_{1}x_{n_{k}}^{-}|| + ||u - T_{2}u||)/2, \\ &+ (||(x_{n_{k}}^{-}-T_{2}u|| + ||u - T_{1}x_{n_{k}}^{-}||)/3, \\ &+ (||x_{n_{k}}^{-}-u|| + ||x_{n_{k}}^{-}-T_{1}x_{n_{k}}^{-}|| + ||u - T_{2}u||)/3 \}. \end{split}$$

Taking the limit as $k \not \sim \infty,$ we obtain $||u - T_2 u|| = 0$. Therefore, $u = T_2 u$. Now,

$$\begin{aligned} ||u - T_{1}u|| &\leq ||u - T_{2}u|| + ||T_{2}u - T_{1}u|| \\ &\leq \max \{(||u - T_{1}u|| + ||u - T_{2}u||)/2, \\ &(||u - T_{2}u|| + ||u - T_{1}u||)/3, \\ &(||u - u|| + ||u - T_{1}u|| + ||u - T_{2}u||)/3 \end{aligned}$$

This implies $||u - T_1 u|| = 0$. Therefore, $u = T_1 u$.

<u>ACKNOWLEDGEMENT</u>. Thanks are due to the referees for a critical reading of the manuscript. In particular, the present improved version of Theorem 4.1 is due to the suggestions of one of the referees who pointed our attention to reference [9].

REFERENCES

- BONSALL, F.F. Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, India, 1962.
- BROWDER, F.E. Non-expansive nonlinear operators in a Banach space. <u>Proc.</u> <u>Nat. Acad. Sci., 54</u> (1965), 1041-1043.

- ĆIRIĆ, Lj.B. On fixed point theorems in Banach spaces, <u>Publ. Inst. Math.</u>, <u>19</u> (33), (1975), 43-50.
- DIESTEL, J. Geometry of Banach spaces, Lecture notes, No. 485, <u>Springer-Verlag</u>, Berlin, 1975.
- GÖHDE, D. Zum Prinzip der Kontraktiven Abbildung, <u>Math. Nach.</u>, <u>30</u> (1965), 251-258.
- 6. KANNAN, R. Some results on fixed points III, Fund. Math., 70 (1971), 169-177.
- KIRK, W.A. A fixed point theorem for mappings which do not increase distances, <u>Amer. Math. Monthly</u>, <u>72</u> (1965), 1004-1006.
- OPIAL, Z. Nonexpansive and monotone mappings in Banach spaces, Lecture notes from January, 1967 lectures given at Center for Dynamical Systems at Brown University.
- RHOADES, B.E. Some fixed point theorems in Banach spaces, <u>Math. Seminar Notes</u>, 5 (1977), 69-74.