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ABSTRACT. A strip analytic function converging in the D’ topology to certain

boundary values (from the interior of the strip) is represented as the difference

of two generalized Cauchy integrals.
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I. INTRODUCTION.

In the theory of distributional behavior of analytic functions, two following

topics are central: (i) the representation of distributions in terms of boundary

values of analytic functions; (2) the representation of analytic functions

terms of distributions.

The present paper, influenced by [I, Theorem 97, p. 130] via [2, Theorem 3.6,

p. 68], continues the note [3] and contributes to the second topic. In the cited

theorem of Beltrami and Wohlers, there is established a decomposition of strip

analytic functions into the difference of two Cauchy distributional representations

concerning the S’ topology. Here, a version of this boundary value theorem is

proved involving the D’ topology.

2. NOTATION AND PRELIMINARIES.

Throughout this paper the following symbols will be used:
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t" the real coordinate of a point of In;

z, " the complex coordinates of points of , z x + iy;

4+, 2-" the open upper half-plane {z : Im(z) > 0} and the open lower

half-plane {z E " Im(z) < 0} respectively;

C C (): the vector space of all infinitely differentiable complex valued

functions defined on In;

): the vector space of all C -function with a compact support;

D’ D’( In)" the space of all continuous linear functionals (Schwartz distri-

butions) on .
For the completeness we recall a few basic definitions and facts on the spaces

(In)and (IN).

Let be a real number. We say that a function 6 6 if E C and for each

non-negative integer p there exists a constant M such that IDp (t) M (i + It I)
P P

for all t IR. A sequence () (n) is said to converge to zero in
n n e

if the following are satisfied" (I) each n ; (2) for each p the sequence

(Dp n converges uniformly to zero on every compact subset of IR; (3) for each p

M independent of n, such that IDp ,n(t)l M (i + It l)there exists a constant p’ p

for all t IR. The space is dense in 6 (that is, for each there

exists a sequence (n) in which converges to in 6). A linear functional T

on into is continuous if lim T,n T, lim n T, for any
n/ n+

sequence () that converges to in 6 The space 6 is the space of all
n

continuous linear functionals (distributions) on 6 Finally, note the proper

inclusions 6 and 6

In the following we shall use the same expression to denote a regular distri-

bution and a function that generates it lwhen no confusion is possible).

3. AUXILIARY RESULTS.

In order to establish the main result, we shall need the following three

simple lemmas.

i
LE 3.1" If h+(z) is a function analytic in A+ with h+(z) 0( ]--I as

h
+zl in A+ and if h+(x + i) converges to in the topology as + 0,
x
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that is,

<h
+

lim z\h+(x + ic), > lim
X

-++0 g-++O
h+(x + i) (x) dx

for each 9, then h
+ E 6 for all G < O.
x

+
PROOF. For each > 0 the function x + h (x + iT) is continuous on

Therefore for each > 0 the linear functional on into defined by the integral

<h+(x + ig), I h+(x + ig) (x) dx

is a regular distribution in ? By the hypothesis on the behavior of h+(z) there

exist the constants R > 0 and A > 0 such that for each > 0 and all xl > R the

inequality
A

AIh Mx
<

holds. Then for all # E with a support contained in the set E {x IR"

Ixl >- r > R} it follows

< h+ @>I lim
X I h+(x + i) (x) dx -< A I [xl-1 l(x)Idx

us the distribution h
+

has the asymptotic bound Ixl -I. Hence, by Theorem
X

[4, p. 54] it can be extended from t) to 5 for all < 0. In other words,

h 6 (<0).
x’ G

Also, since

for each > 0 and all with Supp c E, we conclude that h+(x + i) is a regular

distribution i’ ( < 0).

REMARK 3.1. Perhaps it may be of interest to prove the above result directly.

Consider a linear functional on e( < 0) defined by means of

<h+(x + i), # i h+(x + i) (x) dx,

For each > 0 the integral (3.1) exists because the integrand is equal to
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0(Ixl-l+).’ Let (n) be any sequence which converges to zero in 6 as n - We

must show that

lim <h+(x + i), n ) 0

Let r denote a positive real number. Then we can write

fh+(x + ig) n(X) dx -< I h+(x + i) n(X) dx +

x -<r

lh+(x + +/-)

Letting be an arbitrarily small positive real number, we may choose the number

r so large (r > R) that

(3.2)

]h+(x + ig) Cn(X) dx -< A M I }xl-l+e
0

dx < (3.3)

for all n. The closed interval [-r, r] being now fixed, it follows from the con-

vergence of (@n) to zero in 6 and the Lebesgue dominated convergence theorem that

lim I h+(x + ig) n(X) dx 0 (3.4)

The bound (3.3) and the limit (3.4) together show that the estimate (3.2) can be

made arbitrarily small for larg enough n. Consequently, the linear functional

(3.1) is a regular distribution in ’ ( < 0).

The previous results suggest the following lemma.

LENNA 3.2. if the function h+(z) satisfies the conditions of Lemma 3.1, then

h+(x + +/-) converges to h
+

+/-n the ( < O) topology as + O, that +/-s,x

<h+, lim <h+(x + i), lim I h+(x + i) (x) dx
x +0 /+0

for each 6 ( < 0).

PROOF. Let e be a negative real number and let r be as in the proof of Lemma

3.1. To consider the limit we write

(x + ie) (x) dx (x + ie) (x) dx + (x + i6) (x) dx
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where @ 6 6. As each function is a C -function, for any given compact of

there exists a function in D that is identical to over this compact [6, p. 4].

So, by the hypothesis the first limit exists Since h+(z) is analytic and bounded

in the domain {z 6 &+: IRe(z) e r > R} it follows that h+(x + ig) + h+(x) for

almost all Ixl r as g + 0. At the same time lh+(x + ig) < xA for all > 0.

Therefore, using the Lebesgue dominated convergence theorem,

lit I h+(x + ig) (x) dx I h+(x) @(x) dx
g/+0

Consequently, there exists a distribution H 6 ( < 0) such that

h
+H lim h+(x + ig), for each This implies H overx’ x X+ 0

D. But is dense in Hence, h
+

H over 6x x

Obviously, the obtained results can be transposed bodily for a function h (z)

analytic in A- with h-(z) 0 (--) as Iz{ and generating a regular distribution

in by the integral

I<h (x i), ) h (x i) (x) dx.

LEMMA 3.3. If the function hz) satisfies the condition of Lemma 3.1, then

I
h
+ i > h+(z) for z 6

+ (3 5)
2zi < t t z

0 for Z 6

PROOF From Lemma 3.1 we kDow, in particular, that the distribution h
+

acts
t

1
on the space e with -i. Since the function t

t z
belongs to this space

(Im(z) z 0), the Cauchy representation of h
+

is well defined. To prove the lemma,
t

we shall first evaluate the limit of the integral

i
h
+ i >2i < (t + ig),

t z

as g + 0 (observe that this integral exists for each e > 0). Let z be any point

in A+. By the Cauchy integral formular applied to the function

h+( + iE)

along the closed path consisting of a sufficiently large semicircle in &+ of
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radius r and the segment [-r, r], we get

i I h+(t + is)
dt

2i t z
h+(z + is) for Z EA

+

For z E A this integral vanishes. Thus, letting s + +0, we have

1
lim < h+(t + is)

i > h+(z) for z6 A+
2zi t z

0 for Z 6 A

Now by Lemma 3.2 the representation (3.5) follows.

For a function h (z) analytic in and satisfying here the conditions similar

to ones of h+(z), we infer by the same procedure that

1 h 1 ) h-(z) for z, A-
2i t z

0 for z. A+

4. THE MAIN RESULT.

We are now prepared to prove the main result of this paper.

THEOREM 4.1. Let f(z) be a function analytic in the strip A {z, :
Yl < Im(z) < y2 with f(z) 0( 1

z11+%
for some % > 0 as zl + in A. Suppose

that fl lim f(x + i(yI
+ s)) and f2 lim f(x + i(y

2
s)) in the 9’ topo-

s +0 s + +0
logy. Then for Yl < Im(z) < Y2

i i i i (4.1)f(z) 2-- < fl t + iyI z 2i < f2 t + iy2 z

where the Cauchy representation of fl is analytic in the upper half-plane

Ira(z) > YI’ and the Cauchy representation of f2 is analytic in the lower half-plane

Ira(z) < Y2"
PROOF. Let Yl < a < b < Y2" Since f(z) tends uniformly to zero as Izl

in 4, an application of Cauchy’s integral formula [7, Lemma I, p.293] leads to the

decomposition f(z) f+(z) + f-(z), where

+ia
1 I f()f+(z)

2vi z
-oo+ia

oo+ib
i J[ f()%f (z) 2z--- Z

-oo+ib
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We recall that the function f+(z) is analytic in the upper half-plane Im(z) > a,

and f (z) is analytic in the lower half-plane Im(z) < b. By virtue of the arbi-

trarily closeness of the points a and b to the points Yl and Y2 respectively, the

strip A is the common domain of analyticity for f+(z) and f-(z). In order to

investigate the behavior of these functions at the point at infinity consider the

equality
+.ia

I [ z f ()
z f+(z)

2i j z d

-ooia

oo+ia oo+ia
i f f()

d
i I f() d (4 2)

2i - z 2i
-oo+ia -oo+ia

The integral of the Cauchy type in (4.2) vanishes as Iz in the upper half-

i
plane Im(z) > YI’ while other one converges since f() 0( % > 0.

From this we conclude that f+(z) 0( --T as zl oo. Also, from a similar inte-

gral representation for z f-(z) we infer f-(z) 0( T1 as Iz in the lower
z

half-plane Im(z) < Y2"
Further, we must verify that the functions f+(z) and f-(z) really converge in

the D’ topology to certain boundary values on Im(z) Yl and Im(z) Y2 respectively

(from the interior of A). Let z x + i(a + ) be a point in the half-plane

Im(z) > a. Then in the distributional setting

1 (f(t + ia) 1f+(x + i(a + ))
2i t -(x + i)

f+(x + i(yI + g)) lim f+(x + i(a + ))
a/YI

1 1
lim < f(t + ia), t-(x + ig)

a/YI

By Lemma 3.1 the analyticity of f(z) 0( in A(Iz oo) and the convergence

of f(t + ia) to fl as a / Yl together imply fie 6’ (-i _< e < 0). On the other

hand, according to Lemma 3.2 we have

I <f if+(x + i(yI + g))
2i i t -(x + i)
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Now, in view of the distributional Plemelj formulas [5, Theorem 2] we get

1f+ lim f+(x + i + g)) f
l 2i I xx g ++0

in the 9’ topology.

Let z x + i(b ) be a point in the half-plane Ira(z) < Y2" Starting from

i (f(t + ib)
i

f (x + i(b g))
2i t -(x- ig) >

and proceeding along the same lines as before, we find

I (f2 i )f (x + i(y2 ))
2i t -(x- i.g)

e ++0

2zi t t + iyI z

in the 9’ topology.

So we have proved that the function f+(z) [resp. f-(z)] is analytic in the

Im(z) > Yl [resp. Im(z) < y2 with the order relation 0( ashalf-plane

f+Izl / , and that it converges in the 9’ topology to on Im(z) Yl [resp. f on
x x

Im(z) y2 ]. In view of Lemma 3.3, it follows that

i < f+ I > f+(z) for Im(z) > Yl

Analogously,

0 for Im(z) < Yl

i < f i > f-(z) for Im(z) < Y22i t + iy2 z

0 for Im(z) > Y2
Now we shall cmpute the value of the integral

i < f+ i
2i

(t + iY2) t + iy2

for Im(z) < Y2" For such z the function

f+ ()
z

z
(4.3)

is analytic inside the closed path which consists of the segment [-r + iy2,

r + iy2] and the semicircle L of radius r lying in Im(z) > Y2" According to
r

Cauchy integral theorem, we may write

f+ ! f+i
(t + iY2)- dt + --i ()

d 0
2i t + iy2

z 2i - z
-r r
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The integral along L tends to zero as r / . Thus the integral (4.3) is equal to
r

zero for Im(z) < Y2" Also, as an immediate consequence of the derivation above,

I (f-(t + iy I)
i 0 (4.4)

2i t + iy I
z

jvI. Combining the Cauchy representation of f+t and f-t with (4.4) andfor Im(z) >

(4.3) respectively, we have

i f+ + f-(t + iYl),
i > for Im(z) > Ylf+(z)

2i t t + iyI
z

i f- + f+ i
for Im(z) < Y2f (z)

2i t
(t + iY2), t + iy 2 z

f+ + f-(t + iy I) isFrom the decomposition f(z) f+(z) + f (z) we see that fl t

the boundary value of f(z) on Im(z) Yl in the D’ topology and f2 f
t
+

f+(t + iy2) is the boundary value of f(z) on Im(z) Y2 in the same topology.

Consequently,

i < fl’
i for Im(z) > Ylf+(z)

2i t + iyI z

f-(z) 1 < f
1

2i 2’ t + iy 2
z

for Im(z) < Y2

Again returning to the decomposition of the function f(z), the representation (4.1)

follows at once.
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