STABILITY IMPLICATIONS ON THE ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS

KUO-LIANG CHIOU

Department of Mathematics Wayne State University Detroit, Michigan 48202

(Received July 20, 1978)

<u>ABSTRACT</u>. In this paper we generalize Bownds' Theorems (1) to the systems $\frac{dY(t)}{dt} = A(t) Y(t)$ and $\frac{dX(t)}{dt} = A(t) X(t) + F(t,X(t))$. Moreover, we also show that there always exists a solution X(t) of $\frac{dX}{dt} = A(t)X + B(t)$ for which $\lim_{t \to \infty} \sup ||X(t)|| > o$ (= ∞) if there exists a solution Y(t) for which $\lim_{t \to \infty} \sup ||Y(t)|| > o$ (= ∞). <u>KEY WOKDS AND PHRASES</u>. stable, norm, linear systems, null solution, Schauder-Tycheroff Theorem, uniformly converges, equicontinuous.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 34D05, 34D10, 34C10, Secondary 34A30, 34C15, 34D20.

1. INTRODUCTION.

In this paper we shall study the stability behavior of the following systems

$$\frac{dY(t)}{dt} = A(t)Y(t) , 0 \le t < \infty$$
 (1.1)

and

$$\frac{dX(t)}{dt} = A(t)X(t) + F(t,X(t)), \quad 0 \le t < \infty$$
(1.2)

where A(t) is a continuous matrix on \mathbb{R}^n for all $0 \le t < \infty$, F(t,X(t)) is a real valued continuous n-vector defined on $[0,\infty) \ge \mathbb{R}^n$ and X(t) and Y(t) are n-vectors.

Consider special equations of (1.1) and (1.2)

$$y'' + a(t)y = 0, \quad 0 \le t < \infty$$
 (1.3)

and

$$x'' + a(t)x = g(t, x, x'), \quad 0 \le t < \infty$$
 (1.4)

where $a(t) \in C[0,\infty)$ and g(t,x,x') is continuous on $[0,\infty) \times \mathbb{R} \times \mathbb{R}$. From some theorems of stability theory, Bownds [1] showed that (1.3) has a solution y(t) with property

$$\lim_{t \to \infty} \sup (|y(t)| + |y'(t)|) > 0$$
 (1.5)

He also established that (1.4) has the property (1.5) provided that the zero solution of (1.3) is stable and there exists a function $\gamma(t) \in L[0,\infty)$ such that

 $|g(t,x,x')| \le \gamma(t) (|x| + |x'|)$

for $(t,x,x') \in [0,\infty) \times \mathbb{R} \times \mathbb{R}$.

Thus in the following section we shall extend the above results to systems (1.1) and (1.2). In section 3 we shall consider a nonhomogeneous system

$$\frac{dX(t)}{dt} = A(t)X(t) + B(t), \quad 0 \le t < \infty$$
(1.6)

where B(t) is a continuous vector for $0 \le t < \infty$. We shall prove that there always exists a solution X(t) of (1.6) for which $\lim_{t\to\infty} \sup_{t\to\infty} ||X(t)|| > 0(=\infty)$, if there exists a solution Y(t) of (1.1) for which $\lim_{t\to\infty} \sup_{t\to\infty} ||Y(t)|| > 0(=\infty)$. Here $|| \cdot ||$ is an appropriate vector (or matrix) norm.

2. ASYMPTOTIC BEHAVIOR FOR (1.1) AND (1.2).

Before stating main theorems, let us recall a theorem from Coppel [2, p. 60]. THEOREM 2.1. (Hartman [2, p. 60]). Suppose that, for every solution Y(t) of (1.1), the limit

$$\lim_{t \to \infty} ||Y(t)||$$
 (2.1)

exists and is finite. If there exists a nontrivial solution Y(t) of (1.1) for which the limit (2.1) is zero, then

$$\int_{t_0}^{t} t_r^{A(s)ds \to -\infty} \text{ as } t \to \infty.$$

From the above theorem we will obtain the following corollary which is a generalization of Theorem 1 in [1].

COROLLARY 2.1. Suppose that

$$\int_{t_0}^{\infty} t_r^{A(s)ds < \infty}.$$

Then there exists a nontrivial solution Y(t) of (1.1) for which

$$\lim_{t \to \infty} \sup_{y(t)} ||y(t)|| > 0.$$

PROOF. Suppose, to the contrary, that all solutions Y(t) of (1.1) satisfy

$$\lim_{t \to \infty} \sup_{t \to \infty} ||Y(t)|| = 0.$$

$$\int_{t_0}^{t} t_r^{A(s)ds \to -\infty} \text{ as } t \to \infty.$$
 This leads to a contra-

diction. The corollary then follows.

From Theorem 2.1 we obtain

Throughout this paper we shall denote $\Phi(t)$, the fundamental matrix of (1.1) with initial condition $\Phi(0) = I$ (identity matrix).

Now we shall prove the following theorem via the Schauder-Tychonoff Theorem [2, p. 9].

THEOREM 2.2. Suppose that the null solution of (1.1) is stable and that there exists a solution Y(t) of (1.1) for which

$$\lim_{t \to \infty} \sup_{y \to \infty} ||Y(t)|| > 0.$$
(2.2)

Suppose also that there exists $\gamma(t)\in L_1[t_o,\infty)$ such that for some positive constant ℓ

$$\left|\left|F(t,x)\right|\right| \leq \gamma(t) \left|\left|x\right|\right|^{\mathcal{L}}.$$
(2.3)

Then there exists a nontrivial solution X(t) of (1.2) for which

$$\frac{\limsup_{t \to \infty} ||X(t)|| > 0.$$

PROOF. Since the null solution of (1.1) is stable, there exists a positive constant k such that

$$\left|\left|\Phi(t) \Phi^{-1}(s)\right|\right| \leq k \tag{2.4}$$

for all $0 \le t \le s$ and there exists a nontrivial solution Y(t) of (1.1) for which (2.2) holds and

$$||\mathbf{Y}(\mathbf{t})|| \leq 1 - \varepsilon \tag{2.5}$$

for $t \ge t_0$ and for given small positive constant ε (<1).

Since
$$\gamma(t) \in L_1[t_o, \infty)$$
, there exists $T_o(> t_o)$ such that

$$k \int_{t}^{\infty} \gamma(s) ds < \varepsilon \quad \text{for all } t \ge T_o. \quad (2.6)$$

Via the Schauder-Tychonoff Theorem we shall establish the existance of a solution

of the integral equation

$$X(t) = Y(t) - \Phi(t) \int_{t}^{\infty} \Phi^{-1}(s) f(s, X(s)) ds, t \ge T_{o}. \qquad (2.7)$$

Consider the set

 $F = \{U; U(t) = X(t) \text{ is continuous on } J_o = [T_o, \infty) \text{ and}$ $||U(t)|| \leq 1 \text{ for } t \geq T_o\}$

and define the operator T by

$$TU(t) = Y(t) - \int_{t}^{t} \Phi(t) \Phi^{-1}(s) f(s, U(s)) ds. \qquad (2.8)$$

First, we shall show that $TF \subset F$. Taking the norm to both sides of (2.8) and using (2.3), (2.4), (2.5), and (2.6), we obtain for $U \in F$

$$\begin{aligned} ||TU(t)|| \leq ||Y(t)|| + \int_{t}^{\infty} ||\Phi(t) \Phi^{-1}(s) f(s,U(s))|| ds \\ \leq 1 - \varepsilon + k \int_{t}^{\infty} ||f(s,U(s))|| ds \\ \leq 1 - \varepsilon + k \int_{t}^{\infty} \gamma(s) ||U(s)||^{\ell} ds \\ \leq 1 - \varepsilon + k \int_{t}^{\infty} \gamma(s) ds \\ \leq 1 - \varepsilon + \varepsilon = 1. \end{aligned}$$

It is clear that TU(t) is continuous on J_0 . This proves TF \subset F.

Second, we shall show that t is continuous. Suppose that the sequence $\{U_n\}$ in F converges uniformly to U in F on every compact subinterval of J_o . We claim that TU_n converges uniformly to TU on every compact subinterval of J_o . Let ϵ_1 be a small positive number satisfying $\epsilon_1 < 1$. Since $\gamma(t) = L_1[t_o, \infty)$, there exists $T_1 > T_o$ so that for $t \ge T_1$

$$k \int_{t} \gamma(s) ds < \frac{\epsilon_1}{4} . \qquad (2.9)$$

By the uniform convergence, there is an N = N(ϵ_1 , T₁) such that if n \ge N, then

$$\left|\left|f(s, U_{n}(s)) - f(s, U(s))\right|\right| < \frac{\epsilon_{1}}{2kT_{1}}, T_{o} \leq s \leq T_{1}.$$

$$(2.10)$$

Then using (2.8), (2.9), (2.10), (2.3), (2.4), and the fact that $||U_n(t)|| \le 1$ and $||U(t)|| \le 1$ for $T_0 \le t < \infty$, we obtain the following inequalities

$$\begin{split} ||TU_{n}(t) - TU(t)|| &= || \int_{t}^{\infty} \Phi(t) \Phi^{-1}(s) f(s, U_{n}(s)) ds - \int \Phi(t) \Phi^{-1}(s) f(s, U(s) ds|| \\ &\leq \int_{t}^{T_{1}} ||\Phi(t) \Phi^{-1}(s)|| ||f(s, U_{n}(s)) - f(s, U(s))|| ds \\ &+ \int_{T_{1}}^{\infty} ||\Phi(t) \Phi^{-1}(s)|| ||f(s, U_{n}(s))|| ds + \int_{T_{1}}^{\infty} ||\Phi(t) \Phi^{-1}(s)|| ||f(s, U(s))|| ds \\ &\leq k \int_{t}^{T_{1}} ||f(s, U_{n}(s)) - f(s, U(s))|| ds + 2k \int_{T_{1}}^{\infty} \gamma(s) ds \\ &< \frac{\epsilon_{1}}{2} + \frac{\epsilon_{1}}{2} = \epsilon_{1} \quad \text{for } n \geq N. \end{split}$$

This shows that TU_n converges uniformly to TU on every compact subinterval of J_0 . Hence T is continuous.

Third, we claim that the functions in the image set TF are equicontinuous and bounded at every point of J_0 . Since $TF \subset F$, it is clear that the functions in TF are uniformly bonded. Now we show that they are equicontinuous at eact point of J_0 . For each U \in F, the function z(t) = TU(t) is a solution of the linear system $\frac{dV}{dt} = A(t)V + f(t,U(t))$

Since $||z(t)|| = ||TU(t)|| \le 1$ and ||f(t,U(t))|| is uniformly bounded for $U \in F$ on any finite t interval, we see that $\frac{dz}{dt}$ is uniformly bounded on any finite interval. Therefore, the set of all such z is equicontinuous at each point of J₀ (see [2, p.6]).

All of the hypotheses of the Schauder-Tychonoff Theorem are satisfied. Thus there exists a $U \in F$ such that U(t) = TU(t); that is, there exists a solution X(t)of

$$X(t) = Y(t) - \Phi(t) \int_{t}^{\infty} \Phi^{-1}(s) f(s, x(s)) ds$$

Thus, from the hypotheses and the above equality, we obtain .

$$\frac{\lim \sup}{t \to \infty} ||X(t) - Y(t)|| = 0$$
(2.11)

Since $\limsup_{t \to \infty} ||Y(t)|| > 0$, (2.11) implies that $\limsup_{t \to \infty} ||X(t)|| > 0$. This proves the theorem.

It is clear that (1.4) can be written as the form (1.2) with

$$A(t) = \begin{pmatrix} 0 & 1 \\ & \\ -a(t) & 0 \end{pmatrix} \text{ and } F(t,X) = \begin{pmatrix} 0 \\ g(t,x,x') \end{pmatrix}$$

where X = colum(x,x'). Thus we can apply Theorem 2.2 to (1.4) to obtain the following corollary which is a generalization of Theorem 2 in [1].

COROLLARY 2.2. Suppose that the null solution of (1.3) is stable and that there exists $\gamma(t) \in L_1[t_0,\infty)$ such that for some positive constant ℓ

$$||g(t,x,x')|| \leq \gamma(t) (|x| + |x'|)^{\ell}$$
.

Then there exists a nontrivial solution x(t) of (1.4) for which

$$\lim_{t \to \infty} \sup (|\mathbf{x}| + |\mathbf{x'}|) > 0 .$$

PROOF. Since $t_r^A(t) = 0$ for Corollary 2.1, we know that there exists a solution Y(t) of (1.1) for which

$$\frac{\limsup_{t \to \infty} ||Y(t)|| > 0 .$$

If we take ||X|| = |x| + |x'|, then the corollary follows from Theorem 2.2. 3. ASYMPTOTIC BEHAVIOR FOR (1.6).

In this section we shall show that if there exists a solution Y(t) of (1.1) for which $\limsup_{t \to \infty} ||Y(t)|| > 0$ (= ∞), then there exists a solution X(t) of (1.6) for which $\limsup_{t \to \infty} ||X(t)|| > 0$ (= ∞).

THEOREM 3.1. Suppose that there exists a solution Y(t) of (1.1) for which

$$\lim_{t \to \infty} \sup ||Y(t)|| > 0.$$
(3.1)

Then there exists a solution X(t) of (1.6) for which

$$\lim_{t \to \infty} \sup_{t \to \infty} ||X(t)|| > 0.$$

PROOF. From the variation of constants formula we know that any solution X(t) of (1.6) can be written as the form below

$$X(t) = \Phi(t)c + \Phi(t) \int_{0}^{t} \Phi^{-1}(s) B(s) ds$$
 (3.3)

Hence we shall choose c so that $Y(t) = \phi(t)c$ satisfies (3.1).

First, let us suppose

$$\lim_{t \to \infty} \sup_{t \to \infty} || \phi(t) \int_{0}^{t} \phi^{-1}(s) |B(s)ds|| > 0.$$
(3.4)

Let $X_1(t) = X(t) - Y(t)$. It is clear that $X_1(t)$ is a solution of (1.6). Thus from (3.3) and (3.4) we obtain

$$\begin{split} \lim_{t \to \infty} \sup_{t \to \infty} \left| \left| X_{1}(t) \right| \right| &= \lim_{t \to \infty} \sup_{t \to \infty} \left| \left| X(t) - Y(t) \right| \right| \\ &= \lim_{t \to \infty} \sup_{t \to \infty} \left| \left| \Phi(t) \right| \int_{0}^{t} \bar{\psi}^{-1}(s) \left| B(s) ds \right| \right| > 0 \end{split}$$

Thus there exists a solution $X_1(t)$ of (1.6) for which (3.2) holds.

Second, suppose that

t

$$\lim_{t \to \infty} \left| \left| \Phi(t) \right| \int_{0}^{t} \Phi^{-1}(s) B(s) ds \right| = 0.$$
(3.5)

Taking the norm to both sides of (3.3) and using (3.1) and (3.5) we obtain

$$\begin{split} \lim_{t \to \infty} \sup_{t \to \infty} ||X(t)|| &\geq \lim_{t \to \infty} \sup_{t \to \infty} (||Y(t)|| - ||\Phi(t) \int_{0}^{t} \Phi^{-1}(s) |B(s)ds||) \\ &\geq \lim_{t \to \infty} \sup_{t \to \infty} ||Y(t)|| - \limsup_{t \to \infty} ||\Phi(t) \int_{0}^{t} \Phi^{-1}(s) |B(s)ds|| \\ &\geq \lim_{t \to \infty} \sup_{t \to \infty} ||Y(t)|| > 0 . \end{split}$$

This shows that X(t) satisfies (3.2). The theorem then follows.

Using the same argument as Theorem 3.1 we also can obtain the following theorem. THEOREM 3.2. Suppose that there exists a solution Y(t) of (1.1) for which $\frac{\limsup_{t \to \infty} ||Y(t)|| = \infty .$

Then there exists a solution X(t) cf (1.6) for which

$$\lim_{t \to \infty} \sup ||X(t)|| = \infty.$$

PROOF. Since the proof is almost the same as Theorem 3.1, we shall omit the detail.

REMARKS. It is interesting to note that Hatvani and Pintér [3] have studied this type of problem for equation (1.4).

ACKNOWLEDGEMENTS. This work was supported by the U.S. Army Research Office Grant DAAG29-78-G-0042 at Research Triangle Park, N.C.

REFERENCES

- Bownds, J. M. Stability Implications on the Asymptotic Behavior of Second Order Differential Equations, <u>Proc. Amer. Math. Soc. 39</u> (1973), 169-172, MR 47 #2150.
- Coppel, W. A. Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965. MR 32 #7875.
- Hatvani, L. and L. Pintér. On Pertubation of Unstable Second Order Linear Differential Equations, Proc. Amer. Math. Soc. 61 (1976), 36-38.