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ABSTRACT. In this paper, the notation < and denote the Hardy-Littlewood-Polya

spectral order relations for measurable functions defined on a fnite measure space

(X,A,) with (X) a, and expressions of the form f- g and f ’, g are called

spectral inequalities. If f, g LI(x,A,), t s proven at, for se b O,

log[b + (flg) +] log[b + (fg)+] log[b + (fg)+] enever log+[b + (fg)+]
L1([0, a]), here and I respectively denote decreasing and ncreas rearrange-

ment. With the particular case b 0 of this result, the Hardy-Littlewood-Polya-

Lburg spectral inequality fg fg for 0 f, g LI(x,A,) is s to be a

consequence of the well-o but seingly uelated spectral inequality f + g f

+ (where f, g LI(x,A,)), thus giving new proof for e foyer spectral inequa-
g

lity. reover, t rLittleod-Polya-L5urg spectral inequality is also

tended to give (flg)+ (fg) + (fg)
+

and (fg)- (fg)- (flg)- for

not necessarily non-negative f, g E LI,A,B).
YRD PS. EsleHets, Spl Inelies, nve, detem, ncm, glecpe or.

1980 TICS SCTCLSATION CODE. 26D20.

I. INTRODUCTION

In this paper, we prove some spectral inequalities involving the sums an prod

ucts of measurable functions as well as their equimeasuraSle rearrangements, W,tk
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these results, we extend some knownrearrangement inequalities of Day [i, pp.941-943],

Hardy-Littlewood-Plya [2, Theorem 378, p. 278], London [3, Theorems i and 2], Lore-

ntz-Shimogaki [4, Proposition i, p. 34] and Luxemburg [5, Theorem 8.2, p. 102].

Moreover, using our method of approach, we obtain in several cases more general condi-

tions for equality than those given by either Day in [I or London in [3].

2. PRELIMINARIES.

Let (X, A, ) be a finite measure space with total measure (X) a. Whenever

X is clear from the context, we often write .d for integration over X for any

function with either the positive or negative part integrable. By M(X,) we denote

the set of all extended real valued measurable functions on X. Two functions f E

M(X,) and g E M(X’ ), where ’(X’) (X) a, are said to be equimeasurable

(written f g) whenever

B({x f(x) > t}) ’({x:g(x) > t})

for all real t. If f g, it is not hard to see that

(f) (g) (2.2)

whenever : R / R is a Borel measurable function.

If f e M(X,B), it is well-known that there exists a unique right continuous non-

increasing function f on the interval [0, a], called the decreasing reagement

of f, such that f and f are equimeasurable. In fact,

f(s) inf {t e R: ({x f(x) > t})6 s} (2.3)

for all s e [0,a]. Observe that there also exists a unique right continuous non-

decreasing function If -6_f, called the increasing rearrangement of f, such that

f.If

In what follows, we denote the Lebesgue measure on the real line R by m.

It is easy to see that f t" f whenever f + f, where f f M(X,I.I), n
n n=l nn=l n

1,2,3, The following theorem generalizes this fact.

THEOREM 2.1 If f e M(X,), where n 1,2,3, then
n

61ira inf f
(t) lim inf 6f (t) (2.4)

n n

and
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Slim sup f (t-) lira sup 6f (t-) (2.5)
n n

for all t e [0,a]. Thus, if f converges to f -a.e. as n / 0% then f con-
n

n

verges to 6f as n / at every point of continuity of 6f.
Furthermore, if fn converges to f in measure then f also converges to 6f

n

in measure and fn converges to f in LP if and only if f converges to 6f
in LP, where 1 p < .

PROOF. ltuation (2.4) follows from the fact that f / f whenever fn / f
n n--I n--I

in exactly the same way that Fatou’s Lemma is obtained from Lebesgue’s Monotone Conve-

}’rgence Theorem. Next on applying (2 4) to the functions {-f and using the
n n--1

fact that 6_f(t) -6f((a t)-) for t E [0,a], we immediately obtain li--- 6f
n

((a- t) ,< l-m f ((a- t) ), t [0,a], when=e (2.5) follows.
n

Nw’ if f cnverges t f in measure as n / ’ let IInfni i=l

be any subsequ-.

ence of {6f }; then fni i=l
is a subsequence of {fn} and hence contains a sub-

n

I fni 1sequence which converges to f -a.e., by Riesz’s Theorem. Then

j j=l

fnij j--I

is a subsequence of fni j--i

and

j--I

also converges to f m-a.

e. as j / so by Riesz’s Theorem again, we conclude that 6f converges to f
n

in measure (cf. [6, (11.45), p.163]).

The last assertion follows directly from the preceding paragraph and the fact that

the operation of decreasing rearrangements preserves uniform integrability (see [7,

Section 2]).

REMARK. The preservation of L convergence is also shown to be true in
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COROLLARY 3.5 below using a different method of proof.

If f, g M(X,) M(X’ + +
LI L I, and f g E (X,) (X’ , where (X)

’(X’) a < , then we write f.<’ g whenever

fdm dm t [O,a]
0 0 g

(2.6)

and f " g whenever f- g and

By an argument given in [8, p.152], we infer that (2.6) is equivalent to requiring

f t)
+ I(g t) + (2.7)

for all t e R. Moreover, it can be shown (see [9, Proposition 10.2 (iii), p.62],

for example) that

II f ILo II II=o (2.8)

whenever f g where g L (X,)’L (X’,’).

In the sequel, expressions of the form f g (respectively f.<-< g) are called

trong (respectively weak) spectral inequalities

3. SPECTRAL INEQUALITIES INVOLVING THE SUMS OF FUNCTIONS.

In this section, we give simpler proofs for the spectral inequalities obtained by

Lorentz-Shimogaki [4, Proposition I, p. 34] and Day [i, p. 941] and we also extend

them to include not necessarily integrable functions defined on a finite measure space

In what follows, if x (Xl, x2, xn) e Rn is any n-tuple, then we write

xn) x’) to denote respectively the decr-x (xI, x2, and x’ (xI, x2, n

easing and increasing rearrangement of x where we have regarded x. as a measurable

function defined on a discrete measure space with n atoms of equal measures.

LEMMA 3.1. If a (al, a2, a
n

Rn and ’= (bl, b2, bn) Rn, then

n , n n , , +
Y. (ai+ bi Y. (ai

+ bi)E (ai
+ b)

+ +

i--I i=l i=l

PROOF. Without loss of generality, we may assume that ai --ai, i I, 2, n.

+
If I i < j n and bi

< bj, then it is not hard to see that (ai+ b i) + (a.+3
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bj)
+ (ai+ bj)++ (aj+ bi)+. Thus, for each pair of integers i, j such that I i

< j n, whenever bi
< bj, the middle sum of (3.1) is never decreased on interchan-

ging b. and b.. We therefore conclude that the left hand sum is the minimum possi-

value while the right hand sum is the maximum possible value attainable by the

middle sum as runs through all its rearrangements.

L
ILEMMA 3.2. If f, g e (X,) then

(f+ Ig)+dm (f + g)
+
d (6f +

+
dm.

0 X 0 g
(3.2)

PROOF. We first note that it suffices to prove (3.2) for non-atomic measure spa-

ces by imbedding (X,A,p) in a non-atomic measure space; we refer to [9, pp. 52-54]

or [5] for this method. Thus, we assume that (X,A,) is non-atomic.

To prove (3.2), we need only prove the right hand inequality, the rest is similar.

To this end, we first show that there exist sequences of simple functions {f n I}
n

and {gn n i} such that both fn / f and _gn / g not only pointwise almost eve-

rywhere but also in LI. Now since (X,A,p) is non-atomic, there exists a measure

preserving map o:X / [0,a] suck that f f o o -a.e. [9, Theorem 6.2, p. 49].

For each n I, 2, 3, and for each i i, 2, 3, 2n let

E.(n) o-l([ (i-l)a i__a ])
x

2
n 2

n

Define a sequence of functions {f n I} by
n

2n

n
i=l (Ei (n)) E. i

For each n i, 2, 3, let A denote the o- algebra generated by {E (n)

i -I, 2, 3, 2n} and let A denote the o-algebra generated by A If
nffii n"

)(A) IAf dll A A, then, by the martingale convergence theorem [6, Theorem 20.

56, p. 369],

d(,IAnf
JAn)n d(ll

f -a.e.



146 K.M. CHONG

as n , where the convergence takes place point-wise almost everywhere with the

-I
limit function being f -a.e. since f f oo is Aoo- measurable and Aoo o

() where B denotes the Borel o-algebra of [0,a] But, by [9, Proposition I0.

9, p. 70], f f for n I, 2, 3, and so, by [7, Theorem 5.1, p. 403], f
n n

f in L
1

as n / . Similarly, there exists a sequence of simple functions {gn
n i} such that gn + g pointwise almost everywhere and also in L

I
as n /

Now, by [I, Lemma 5.5, p. 938] there exist two sequences of simple functions

{f’n n i} and {g n I} having the same sets of constancy and with these sets

having equal measure such that If’In Ifnl’ Ign’l Ignl and both f’n fn - 0 and

gn gn / 0 pointwise almost everywhere as n / oo. But then f’n / f and gn + g

I
pointwise almost everywhere as n / o% and the convergence also takes place in L by

[7, Theorem 5.1. p. 403] since f’nl -< fnl J fl and gnl -< gnl < gl by virtue

of the fact that fn f --:> Ifnl i< Ifl and gn. g => Ignl Igl (see [9, Theorem

I0.I0, p. 71]).

Hence, by Lemma 3.1, we have

IX n gn Ia(f’ + ’)+ d (f, + )+ dm
0 n

g

where the result follows by taking limits.

THEOREM 3.3. If f, g LI(x,), then

6f / f +g< +6+ Ig f g
(3.3)

PROOF. On substituting f- t for f in (3.2), we see that the result follows

immediately from Lemma 3.2, by virtue of (2.7).

REMARK. The spectral inequality f + g -< 6f + 6 is well-known (see [9, p. 88
g

and [5, Theorem i0.i, p. 108]) and it can be used [7, Theorem 2.2, p. 397] for

giving a simple proof of a result concerning the uniform integrability of functions.

On the other hand, the spectral inequality f + ig- f + g is obtained by Day in [i,

p. 941]. In either case, our present method of approach is simpler.
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COROLLARY 3.4. If f, g g LI(x,), then

6f 6 f g fg
(3.4)

PROOF. Since Ig -6_g, the result follows immediately from Theorem 3.3 on sub-

stituting -g for g in (3.3).

COROLLARY 3.5. (Lorentz-Shimogaki [4, Proposition I, p. 34]). If f, g LI([o,
i], m) are positive, then

PROOF. This is an immediate consequence of the preceding corollary and a theorem

of Luxemburg [5, Theorem 9.5, p. 107].

REMARK. The notation f -< g used by Lorentz and Shimogaki in [4] means

in our present context.

COROLLARY 3.6. Suppose f g L (X,), n I, 2, If f converges in L
n n

to a function f L (X,) as n / oo, then f also converges in L to f as n /

n

oo.

PROOF. Using Corollary 3.4, we have, for each n I, 2, 3, f f fn-
n

f and so by (2 8) ..llf f[loo"<.- II f f[Ioo whence the result follows.
n

The following simple theorem is useful especially for generalizing certain rearr-

angement inequalities (by removing restrictions that certain functions must be non-

negative) and certain spectral inequalities (by removing restrictions that certain fu-

nctions must be integrable).

THEOREM 3 7 If f LI(x,) then the sequence {f defined by f (f +
n n=O n

n)+-n satisfies ]fn if] for all n and decreases to f as n oo. Conseque-

ntly ffndn__+0 If d.

In general, if f M(X,V) with f+ L
Ig (X,), then, as n + oo, f + f and f

n n

dta + f dla R.
n 0

PROOF. The result follows immediately from Lebesgue’s Dominated Convergence Theo-
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rem. and Levi’s Monotone Convergence Theorem.

The following theorem extends Theorem 3.3 to include measurable functions which

are not necessarily integrable.

THEOREM 3 8 Suppose f, g g M(X,) If f+ +
LIg e (X,), then

f + Ig f + g < f + g (3.6)

or, equivalently, if f+ LI
g e (X,), then

f g f g " f Ig" (3.7)

PROOF. If suffices to prove f + Ig f + g, the rest is similar. Let fn
+ +

(f + n) n, gn (g + n) n, where n 0, i, 2, Then f (f + n) n,
n

+ n)
+

flg
n

(lg n. Clearly, fn’ gn e LI(x’) for n O, 1, 2, and so n+
f f + Ig, fn + gn f + g byf + gn by Theorem 3.3. But, as n + oo, + ig

n
lg
n

n
n- f + g, by [I0 Corollary i.II].Theorem 3.7. Hence f + Ig

COROLLARY 3.9. Suppose fl’ f2’ f g M(X,) If f.+ LIg (X,), i i, 2,

n, then

fl + f2 + + fn f + 6f + + f
i 2 n

(3.8)

PROOF. The result follows from Theorem 3.8 by induction.

As a direct consequence of Theorem 3.8 above, the following theorem proves some

basic spectral inequalities which can be used to give simple proofs for some known

spectral inequalities involving the products of functions.

THEOREM 3.10. If f, g LI(x,) are either both non-negative or both non-posi-

tive, then

log f Ig< log fg log fg. (3.9)

f g LI(x,) are all non-negative, thenIn general, if fl’ f2’ n

log flf2 f - log 6f f f (3.10)
n I 2 n

PROOF. If f, g g LI(x,) are both non-negative, then the result follows immedi-

ately from Theorem 3.8 on replacing f, g respectively by log f, log g and on using
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and (log fg)+ (log f + log g) + ,<the fact that log f log f, log g log g

log
+

f + log+g f + g g LI(x,).
The case that both f, g LI(x,) are non-positive follows immediately by apply-

ing the previous case to -f and -g, and using [9, Theorem 4.6, p. 33].

4. SOME SPECTRAL INEQUALITIES INVOLVING THE PRODUCTS OF FUNCTIONS

The following theorem extends some spectral inequalities obtained by Luxemburg [5,

Theorem 10.4] (cf. [9, p. 88]) and Day [i, p. 942] to include not necessarily non-

negative integrable functions. Using this extension, we can easily derive Luxemburg’s

generalization [5, Theorem 8.2, p. 102] of a theorem of Hardy-Littlewood-Polya [2,

Theorem 378, p. 278] Furthermore, our method enables us to give a further extension

of Hardy-Littlewood-Plya-Luxemburg’s Theorem using increasing functions of mixed con-

vex-concave type (see Theorem 4.2 below).

Suppose g g LI(X,). L
1

THEOREM 4 1 f If (f)+ g ([0 a] m) (respectively
g

(flg)- Ll([0,a], m)), then

(flg)+’i (fg)+<-Q (fg)
+ (4.1)

(respectively (fg) (fg) . (flg)) and the strong spectral inequalities

(flg)+ (fg)+’ (fg)
+

(respectively (fg)- (fg)--i (flg)-) hold if and only

if (flg)
+ (fg)+ (f)+ (respectively (f)- (fg)- (flg)-)-g g

Furthermore, [(flg)+] <’ [(fg)+] < [(f )+] (respectively [(fg)-] <g

[(fg) <’< [(flg) ]) for all increasing convex functions : R
+

R such that

L
1+[(fg)+] Ll([0,a], m) (respectively +[(flg) e ([0,a], m)). If, in addi-

tion, is strictly convex and increasing such that [(fg)+] Ll([0,a], m) (res-

L
1

pectively [(flg) ([0,a], m)), then the strong spectral inequalities [(flg)
+

[(fg)+] -<.[(fg)+] (respectively [(fg)-] [(fg)-] [(flg)-]) hold if

and only if (flg)+ (fg)+ (fg)+ (respectively (fg)- (fg)- (flg)-)-

PROOF. We first prove the theorem for the case that f 0 and g O. In this

case, (3.9) holds.
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Assume fg e LI(x,). Since the exponential function exp R R+ is (increasi-

ng and strictly) convex and since exp(log fg) fg e LI(x, ll), we have, on applying

[I0, Theorem 3.3] to the left spectral inequality of (3.9), exp (log 6flg)../’ exp

(log fg), i.e., 6flg’< fg. The spectral inequality fg ,’ 6f6g is proved analogously.

Again, if fg e LI(x,), then log(l + fg) e LI(x,) and, since the function t +

log(l + et), t e R, is increasing and convex, by Theorem 3.10 and [I0, Theorem 3.3],

we have log(l + 6flg)"<’< log(l + fg). Thus, by [I0, Corollary 2.4], the strong spec-

tral inequality 6flg-< fg or, equivalently, I + 6flg< i + fg, i.e., exp(log(l +

6flg)) exp(log(l + fg)), holds if and only if exp(log(l + 6flg)) exp(log(l + fg)),

i.e., i + 6flg 1 + fg or, equivalently, 6flg fg. Similarly, if 6fg e Ll([0,a
m), then fg 6fg and fg 6fg are equivalent.

By [i0, Theorem 3.3], it is clear that (6flg) ’< (fg) (respectively (fg)

R
+ + L

I
(6f6g)) for all non-decreasing convex functions : / R such that (fg)

(X,) (respectively +(f6g) e Ll([0,a], m)). The last assertion is an immediate

consequence of [i0, Theorem 3.3] and the foregoing result.

To prove the theorem in general, we need only establish the spectral inequality

)+<-< (fg)+ and the corresponding assertions concerning the strong spectral in-(flg
equality (flg)+ (fg) +, the rest is analogous. To this end, we first note that

g)+ f+ and (fg)
+

(6fl f+ + + 6 (since 6f and If .+
g f g f f f

f+g+ + f g where the summands on the right in each expression have disjoint supports

Now by what we have proved, 6f+ + f+g+ and 6 _< f g It then follows
g f g

+ -< f+g+easily from (2.7) that (6flg)
+

6f+ +
+ f g (fg)

+
and that

g f g

(6flg)+’< (fg)
+

if and only if 6f+ +’< f+g+ and 6 _’< f g But, by the re-
g f g

suit established in the preceding paragraph, f+ +
f+g+ and 6 _<’ f-g- are

g f g

f+g+respectively equivalent to f+ + and f g
g f g
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Thus, using (2.7) again, we conclude that 8
+ +

f g
and f g if

f g

+ f+g+ (fg)ad only if f+ +
+ f g or (flg)

+ +

g f g

J’J fgREMARK. In theorem 4.1, the spectral inequality fg (where 0 f, g g

LI(x,)) is shown to be a consequence of the well-known but seemingly unrelated spec-

LItral inequality f + g -< f + g (where f, g g (X,)), thus giving new proof for

the former spectral inequality.

THEOREM 4.2. If f, g g M(X,), then

I(f I IaIg) dm .< (fg)d (fg)dm
X 0

(4.2)

for all increasing functions :R + R which vanishes at 0 g R and which is concave

on (-0% 0] and convex on [0,=).

(fg) LIIf in addition, is strictly increasing such that e ([O,a], m)

I ja fg(flg) g Ll([0,a], m)), then (fg)d ( )dm (respectively(respectively
X 0

a I fg)"(fl )dm (fg)d if and only if fg fg (respectively flg
0

g
X

PROOF We may assume that is non-constant and that both +(f and
g

(fg) are integrable, otherwise, there is nothing to prove Since + +
:R/R

R
+

it is SinceLR+q and (0) 0, easy to see that +(fg) [(fg)+].
is convex, non-negative and increasing on [0,), it is also easy to see that

(fg)+ Ll([0,a], m) whenever [(fg)+]g Ll([0,a],m). Similarly, -(flg) e

L
ILl([o,a] m) implies (flg)- ([O,a], m), by noting that (flg) -[-(flg)

and that the function t -(-t) is convex, non-negative and increasing

R
+ )+] < [(fg)+] [(6f )+]

in t g Thus, by Theorem 4 1 we have [(6flg g

Iaand-[_(6fg)-]..(-5[-(fg)-]-.,-5[-(flg)- which imply that [(6flg) +] dm .<
0

[(fg)+] dl : q[(fg) ]dm and 5[-(flg) dm .< [-(fg)-] dla : 5[-(f
X 0 0 X 0

g

dm, whence the required inequalities follow easily.

To prove the final assertions concerning the case of equalities, let [ (fg)dp
X
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a

(fg) dm for some strictly increasing function satisfying the given hy-
0

potheses. Then, since (fg)d [(fg)+] d + fg)-] d [( )+]dm +
X X X 0

[-(f )-]dm (fg) dm, and [(fg)+] d [(fg)+] dm and [-(fg)
g

0 X 0

a
d .< [-(fg)-] dm, we have equalities in the last two inequalities; this is the

0

case if and only if [(fg)+] [(fg)+] and -[-(fg)-] -[-(fg)-], i.e., if

and only if (fg)+~ (fg)
+

and (fg)- (fg)-, by Theorem 4.1 or, equivalently,

fg fg, a fact which is easily seen using (2.7).

The rest follows analogously.

REMARK. When (t) t, Theorem 4.2 gives Hardy-Littlewood-Plya-Luxemburg’s The-

orem [5, Theorem 8.2, p. 102] as an important particular case. Moreover, our method

shows that the condition imposed earlier by Luxemburg on the functions f and g, i.

e., ifligl Ll([0,a], m), is not necessary for the theorem to hold, though it is a

andnecessary and sufficient condition to ensure the integrability of both flg f

In our version of the theorem, we have, therefore, omitted this condition, provi-
g

ded the inequality is interpreted in its appropriate sense.

5. A REARRANGEMENT THEOREM INVOLVING THE SUMS OF FUNCTIONS.

The following extension of Corollary 3.6 also contains the inequality of Hardy-

Littlewood-Plya [2, Theorem 378, p. 278] and Luxemburg [5, Theorem 8.2, p. 102] as

a particular case.

THEOREM 5.1. If f, g E LI(x,), then (f + Ig)’, (f + g) (respectively

(f + g)’- (f + )) for all convex functions : R - R such that +(f + g) E
g

$+ L
ILI(x,) (respectively (6f + 6 e ([0,a] m)) and more generally, + Ig)dmg

f fa$(f + g) d g $(6f + 6 dm for all convex functions : R / R.
X 0 g

LI
If in addition, is strictly convex such that $(f + 6g) e ([0,a], m)

(respectively (f + g) LI(X,)), then the strong spectral inequality
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(f + g) #(f + g) (respectively (6f + ig -< (f + g)) holds if and only if

f + g 6f + 6g (respectively 6f + Ig f + g)-

PROOF. This is an easy consequence of Theorem 3.8 and [i0, Theorem 3.3].

COROLLARY 5.2. If f, g e L2n(x,p), where n ) i is an integer, then

a
2ndm I 2nd Ia(6f + Ig) (f + g) (8

0 X 0 f
+ g) 2ndm.

There is equality on the left (respectively on the right) if and only if 6f + Ig
f + g (respectively f + g 6f + 6 ).

g

PROOF. The result follows easily since the function (t) t
2n is strictly con-

vex on R.

L
I

COROLLARY 5 3 (Hardy-Littlewood-P61ya-Luxemburg) If f, g e (X,), then

dm fg d f6Ig X J0 g
dm.

L
2

If f, g e (X,), then equality on the left (respectively on the right) occurs

if and only if 6f + Ig f + g (respectively f + g 6f + 6g).

PROOF If f, g e L2(X,), then Corollary 5.2 implies

Ia 2 I Ia 2
(6f + Ig) dm (f + g)2 d (6f + 6 dm

0 X 0 g

which, after expansions, clearly simplify to give

fa I If06flg dm xfg d g
am

where the conditions for equalities’are as stated above.

/

^ t, t e R the inequalities just proven can beSince 6f^t 6f A t, ig^t Ig
easily extended to non-negative integrable functions f, g by approxitions. The

result then follows from the approximation procedure given in Theorem 3.7.

L
2 fg (respec-COROLLARY 5 4 If f, g (X,) where (X) a < =, then 6flg

f + g (respectively f + g 6f + 6 ).tively fg f6g) if and only if 6f + Ig g

PROOF. This is a direct consequence of Theorem 4.2 and Corollary 5.3.
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REMARK. The spectral inequality If + g p lf + p
g p i, which is obtain-

ed by putting (t) tl p in Theorem 5.1, can be used for establishing the sub-addi-

tivity property of the norm for the Lorentz space A(, p) [4] (see [9, p. 88]).

Furthermore, Theorem 5.1 also contains the results obtained by Day in [I, 6.4

and 6.6, pp. 942-943] as particular cases.

6. AN EXTENSION OF A THEOREM OF LONDON.

In [3, Theorem i and 2], London proved two rearrangement inequalities involving

n-tuples and, in [i, p. 943], Day obtained some continuous versions of these theo-

rems. It turns out that [3, Theorem 2] is also a particular case of Theorem 4.1.

We shall now give a further generalization of [3, Theorem i]. In either theorem, we

obtain conditions for equality for a wider class of convex functions than the one gi-

ven in [I] or [3] for every strictly convex and increasing function is strictly

increasing and convex but not necessarily conversely, e.g., the identity function on

R is strictly increasing and convex but not strictly convex.

THEOREM 6.1. Let f, g e LI(x,) be either both non-positive or both non-negati-

R
+

ve Let : R be a function such that (et) is convex and non-decreasing in
I

R. If + {c + [b + (fg)r]r} e Ll([0,a], m) for some r > 0, b 0, c 0,t

i I i

then {c + [b + (flg)r]r} f.< {c + [b + (fg)r]r} < {c + [b + (f6g)r]r}

If, in addition, (et) is strictly increasing and convex in t g R such that
i I

{c + [b + (fg)r]r} e eI(X,) (respectively {c + [b + (fg)r]r} Ll([0,a], m))

and b + c > O, then the left (respectively right) spectral inequality is strong if

and only if flg and fg (respectively fg and fg) are equimeasurable.

PROOF. This follows directly from [I0, Theorem 3.3, p. 1338] and Theorem 3.10

rt rwith the convex function (e) where is the function t / log{c + (b + e },

t R, which is easily seen to be strictly convex and increasing.

The following theorem is an extension of Theorem 3.10 for integrable functions

which are not necessarily non-negative or non-positive. It also contains Theorem 4.1

as a particular case, via [i0, Theorem 3.3, p. 1338].
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THEOREM 6.2. Suppose f, g e LI(x,). If

log+[b + (6f6g)+] e Ll([0,a], m) (respectively

log+[b + (fg)+] e LI(x,)) for some b ) 0, then

log [b + (fg)+] -< log [b + (f6g)+] (respectively

log [b + (6flg) +] 4 log [b + (fg)+]).

LIIf b > 0 and if log [b + (fg)+] e ([0,a], m) (respectively log [b + (fg)+]

e LI(X,)), then

log [b + (fg)+] -< log [b + (6fg)+] (respectively

log [b + (flg)+] "< log [b + (fg)+]) if and only if (fg)
+

(6fg)
+

(respectiv-

ely (flg)
+ (fg)+)"

PROOF. For b > 0, the result can be obtained from Theorem 3.10 and 6.1 as in

Theorem 4.1. The case that b 0 then follows from the case that b > 0 by approx-

imations.

COROLLARY 6.3. Suppose f, g e LI (X, ). If

log
+ [b + (flg)-] e Ll([0,a], m) (respectively

log
+ [b + (fg)-] e LI(x,)) for some b > 0, then

log [b + (fg)-] ,-< log [b + (flg)-] (respectively

log [b + (fg)-]-- log [b + (fg)-]).

L
1If b > 0 and if log [b + (flg)-] ([0,a], m) (respectively

log [b + (fg)-] e Ll(x,)), then

log [b + (fg)-] -< log [b + (flg)-] (respectively

log [b + (fg)-] , log [b + (fg)-]) if and only if (fg)- (flg)- (respective-

ly (fg) (fg)).

PROOF. This follows immediately from Theorem 6.2 on replacing g by -g.

Using Theorem 6.2 and Corollary 6.3, we can give a further generalization of [6,

Theorem l for integrable functions which are not necessarily non-positive or non-

negative. This generalization turns out to be of the same form as Theorem 6.1 except
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fgthat f g g LI(x ) are now any pair of integrable functions and that flg,
and 6f6g can now be replaced respectively by either (6flg) +, (fg)

+
and (f6g)

or (6f6g) (fg) and (6flg)

7 A CONCLUDING REMARK.

The particular case that b 0 in Theorem 6.2 deserves to be highlighted as a

single theorem to be given below since it not only generalizes Theorem 3.10 but also

gives rise to all the results obtained in Sections 4 and 6 via [i0, Theorem 3.3, p.

1338] with an appropriate convex function such as O(t) log (b+et) t ER, for

some b 0 in the case of Theorem 6.2.

LI L1
THEOREM 7.1. If f, g e (X,) are such that log

+ [(6fg)+] e ([0,a], m)

LI(respectively log
+ [(fg) +] (X,)),

then

log(fg) +- log(6f6g)
+

(respectively

log(flg) +-< log(fg)
+

where the spectral inequalities are strong if f and g are either both non-negative

or both non-positive.
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