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ABSTRACT. We consider the second coefficient of a class of functions, univalent

and normalized, and with all derivatives univalent in the unit disk D, and improve

on a known result. It is also shown that this bound is in a sense best possible.
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i. INTRODUCTION.

Let S be the family of functions of the form

f(z) z + akzk
k=2

(1.1)

which are analytic and univalent in the unit disk D: zl < i. Let E be the sub-

family of S such that if f E, then each f(n) is univalent in D, n 0,1,2,

Set

sup {la21 f E}. (1.2)

Then it is known that f must be an entire function of exponential type not exceed-

ing 2 [2,3] and [1,2]

1.5910 < < 1.7208. (1.3)

We construct, in Section 2, a function f belonging to E for which

f"(0) > 3.18781
1.593905. (1.4)a2 2 2
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Consider now a subfamily of E, E+ defined as follows:

E+ if f E, f(k)(0) > 0, k 1,2 }.

Set

sup {a
2, f E+}.

It follows from an unpublished result of Ted Suffridge that

+ < 1.62031. (1.5)

Note that the function f defined below by (2.2) belongs to E+, and so a lower bound

for + is given by (1.4).

2. MAIN RESULT.

In the following we shall write

{(T + )e- + (T- )e}/2

where T is a positive constant.

THEOREM. Let

(z) {exp((l + z)) exp(-(l + z))}/2 + Az

2
+ (AT + ) --+ Bz

3 (2.1)

where A, B, T are nonnegative constants, and let

f(z;A,B,T) f(z) {(z) (0)}/’ (0). (2.2)

(i) If T 3.18781018, A 0.03666, B 0 then f defined by (2.2) belongs to

E and

2a
2

f"(0) T > 3.18781.

(ii) If T 3.18782 then f defined by (2.2) does not belong to E for any

(2.3)

choice of nonnegative constants A,B.

PROOF. We require the following:

DEFINITION. Let f(z) be regular in D. Then F(z) is called typically-real if

and only if

Im f(z) 0<>Im z 0.

The following theorem is due to S.Y. Trimble.

z
n

THEOREM A [4]. Let f(z) z + E a be regular in D and suppose that all
n

n=2
a are real. Then a necessary and sufficient condition that f e E is that each
n
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f(k) (k 0,i,2 is typically real in D.

and

PROOF OF (i). It is easily seen that (0) sinh > 0, @’(0) cosh +A>0;

T 2 + )+B / + zf(z) z + z + e e- + e

is entire and of exponential type n and has all positive coefficients. Further,

writing z x + iy, we have

sin zy sinh (i + x)
Y

+ (AT + ) + 6Bx.

Write

2(x (Im @’(z))Im z Iz; i"

Then

2(x)
sin /i x2 z sinh (i + x) + (AT + ) + 6Bx.

This function @2 is positive for -i -< x -< i, since 0 6B < AT + by our choice of

T, A and B. Hence #’ (z) is typically real. Further,

"(z) sinh n(l + z) + AT + + 6Bz,

and since B 0

Im "(z) sinh y cosh (i-+ x).

This shows that "(z) is typically real. Similarly each (k)(z), k 3,4 is

typically real.

Consider now

Im )
{cosh (i + x)} sin /i- x2

z/1 x2
+ A + (AT + )x + B(4x

2
I). (2.4)

Note that l(X) > 0 for 0 < x < i. Write now F(x) l(-X)" Then

F(x) {cosh (i x)} sinh /i- x2 + A- (AT + )x + B(4x
2

-i). (2.5)
/i x2

Write
C(x) cosh (i- x), H(x) (sinh i x2)/n i- x2)

G(x) A- (AT + )x, S(x) sinh z(l x).



284 A. SATHAYE AND S.M. SHAH

Then since B 0,

F(x) C(x)H(x) + G(x)

F’(x) {- sinh (i- x)}H(x) + C(x)H’(x) + G’(x)

and

H(x) --x
2 i+

n=2 n
2

A
Now B 0 and for 0 < x < 0.046 <

(AT + ) G(x) A- (AT + )x > 0.

Further for x [0.92,1] we have

min C(x) C(1) i

and
rain H(x) H(0.92) > 0.765

mln G(x) G(1) > -0. 752.

Thus F(x) 0 for x [0.92,1] and also for x E [0,0.04].

Differentiating log H(x), we have

H’ (x) 2 + 2x
1

H(x) 2
n--2n 1

(x)

where

e(x) (2x3)/{(n2 l)(n
2

1 + x2)}
n--2

Write u(x) (2/x) + (3x/2). Then

F’(x) -S(x)H(x) + C(x)u(x)H(x) e(x)C(x)H(x) (AT + )

Now 0 < g(x) < (0.27)x3 in the interval (0.040,1). Further in this interval,

u, C+, S, H’ > 0 and so H+. Now u(1) > 0 and so u(x) > 0, C(1) 1 and so

C(x) > 0, S(1) 0 and so S(x) > 0, H(x) i as x i-0, H(0) 0, H(x) > 0 and

(x) < 0.27x
3

and x3+ and positive.

Let x
I

< x < x
2
where xI, x

2
belong to this interval. Denote by subscript 2

the value of these functions at x
2

and by subscript i at xI. Let

Tl(Xl,X2) -TI u2C2HI H2(S1
+ Ci(0.27x23)) (AT + ),

T2(Xl,X2) T
2 UlCIH2 HI(nS2) (AT + )

Then for xI
< x < x2, TI

< F’(x) < T2. Hence we have

PROPOSITION 2. If T
1

> 0 or T
2

< 0 then F(x) is monotone in this interval and

so if F(xI) > O, F(x2) > 0 then F(x) is positive.
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COROLLARY 3. Suppose that the quantities {T.}l and {F(xi)} are machine calcu-

lated with at least 6-digit accuracy and we have:

-6 -6
(i) T

1
-> i0 or T

2
< -i0

(ii) F(xI) > 10-6, F(x2) > 10
-6

then F(x) is positive in [Xl,X2].
COROLLARY 4. By machine calculations we have:

(i) For

(ii) For

(iii) For

[Xl,X2] [0.040000,0.054844]

T
2

-0.0410121, F(Xl)= 0.0133178

F(x2) 0.0081411

[Xl,X2]-- [0.847885,0.918943]

TI 0.0373463, F(xI) 0.0354489

F(x2) 0.1001402

[Xl,X2] [0.918943,0.990000]

T
1

0.8434650, F(Xl) 0.1001402.
F(x2) 0.2242320

(2.6)

(2.7)

(2.8)

for every Xo in [Xl,X2]. Hence we have

PROPOSITION 5. Let T
1

< 0 and F(xI) > 0, F(x2) > 0. If F(xI) > M(Xl,X2)
then F(x) > 0 in [Xl,X2].

COROLLARY 6. Suppose that {F(xi) and M(Xl,X2) are machine calculated with

at leat 6-digit accuracy and we have

> F(Xl) + TI (x2 Xl) F(Xl) M

F(Xo -> F(Xl) + T1 (Xo Xl)

Hence F(x) is positive in the intervals (2.6), (2.7) and (2.8). Thus it is now

enough to show that F(x) > 0 in [0.054844,0.847885] [XI,X2] say. We now consider

when T
I

< 0, T
2

> 0. Write M(Xl,X2) M -TI (x
2 Xl). By the Mean-Value

Theorem, F(xo) F(xI) + F’()(Xo Xl)’ where xI
< Xo < x

2
and (Xl,Xo). Hence
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(i) F(Xl) > 10-6, F(x2) > 10
-6

-6
(ii) F(xI) > M(Xl,X2) + i0

then F(x) is positive in [Xl,X2].
PROOF THAT F(x) > 0 IN [Xl,X2]. This was carried out by running the following

simple program and repeatedly applying Corollary 6, as indicated.

(1)

(2)

Set xI Xl, x
2

X2.

Apply test of Corollary 6. Is the hypothesis satisfied? If not, then

(3)

(4)

(5)

go to (5).

F(x) is now positive in [Xl,X2]. Is X
2

x
2

< 10-6? If it is, then

stop. We have proved F(x) > 0 in [Xl,X2] and x
2

is as close to X
2

as

-6
is reasonable. If X

2
x2

> I0 then continue.

Start with the next interval by replacing x
I
by x

2
and x

2
by X2. Go

to (2).

[xl,x2] is too large. Replace x
2
by (xI + x2)/2. Is (x

2
xI) 10-67

If it is, then stop. This method cannot be reliably continued beyond

-6
xI. If x

2 xI
a i0 then go to (2).

This program terminated by x
2 reaching X.. In fact the program was run from

0.04 to 0.99 by incorporating the test of Corollary 4, as well as another mean value

test comparing F(x2) and T2 (x
2

xI) when T
2

> 0. The numbers presented here

were generated by the program and are not intrinsically significant. The table for

the relevant calculations is available upon request.

This completes the proof of the statement that F(x) 0 in -i < x -< i and

hence that of (i).

(ii) We require the following:

L4MA. Consider a family of functions of two parameters (a,b) defined by

#(x,a,b) af(x) bg(x) + h(x). (2.9)

Suppose that there exist a Xl, x
2
satisfying

o

(xi,ao,0) < 0, i 1,2 (2.10)

f(xl) g(xI) > 0 f(x2) g(x2) < 0 (2.11)
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and

f(xl)/g(xl) _< f(x2)/g(x2) (2.12)

Then for all a, b -> 0 we must have either

(xl,a,b) < 0 or (x2,a,b) < 0 (2.13)

REMARK. In this lemma and proof of (ii), f is different from f in (2.2).

PROOF. Assume the contrary. We will show that the resulting system of in-

equalities has no solution. Set e a a B b. Then we get from (2.10) and
o

our assumption,

0 < (xi,a,b) (xi,ao,0) f(xi) g(xi), i 1,2. (2.14)

Also by our assumption

(2.15)

From (2.15), (2.14) and (2.11) we get e 0. Now we claim that # 0; for other-

wise (2.14) (with i 2) and (2.11) give f(x2) > 0, that is < 0 leading to a

contradiction.

Thus B > 0 and from (2.14) (with i i) and (2.11) we get > 0. Now (2.14)

(with i 1,2) and (2.11) yield

f(x1) B f(x
2> >

g(xI) g(x2)

in contradiction to (2.12). The lemma is proved.

PROOF OF (ii). Let, in the lemma,

(x,a,b) C(x)H(x) x + a(l rE) b(l 4x2)

a A, b B, f(x) i- Tx, g(x) i- 4x2, T 3.18782

h(x) C(x)H(x) x

Then from (2.5) and (2.9) we see that

(x) (x,a,b) (x,A,B) F(x)

Let x
I

0.1160000, x
2

0. 7033334, ao 0.0366100. Then the following are correct

up to 6 decimals at least.

(xI) -0.0000062, (x2) -0.0000037

f(xI) 1 TxI 0.6302128, f(x2) -1.2421002
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g(xI) I 4x21 0.9461760, g(x2) -0.9787114

f(xI) f(x
2

g (I) 0. 6660630,
g (x2)

1.2691179

Hence the conditions of the lemma are satisfied. This means that (xI) F(xI) < 0

or (x2) F(x2) < 0 for all choices of A, B > 0 and consequently the function f

defined by (2.2) cannot be in the class E, if T 3.18782, for any choices of A -> 0

and B >0.

REMARK. The choices of T and A, in part (1) of the theorem are not intrin-

sically significant. Another computer program was set up which, for any given T,A

and given interval [Xl,X2] could quickly chec the values of the function at sev-

eral points in the interval and calculate relevant quantities in the lemma. The

actual T,A,B were then found simply by trial and error by taking some value of T

and eliminating possible choices of A,B by applying the lemma. If for a given T

all A,B got eliminated, then a lower T was chosen. Finally, all calculations were

rechecked as before for the chosen T,A,B.

The fact that the computer used for this process (Radio Shack TRS 80) was

interactive and totally dedicated was very vital in the success of this "trial and

error method.
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