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ABSTRACT. The Blasius boundary layer on a flat plate in the presence of a constant

ambient magnetic field is examined. A numerical integration of the MHD boundary

layer equations from the leading edge is presented showing how the asymptotic solution

described by Sears is approached.
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1. INTRODUCTION.

Amendments to the classical Blasius boundary layer on a semi-infinite flat plate

(y 0, x >. 0) created by the flow of a uniform viscous stream of fluid, with kine-

matic viscosity and velocity o parallel to the plate for large values of y, have

been examined on numerous occasions by the addition of external body forces. In par-

ticular, the effects caused by allowing the fluid to have a non-zero electrical con-

ductivity o and magnetic permeability , together with an ambient applied magnetic

field H have been analysed by various authors, usually by assuming that H is con-
~O ~O

stant at large distances from the plate. The case when undisturbed magnetic field is

parallel to the plate is now quite well understood, principally due to the work of

Greenspan and Carrier (I) and Glauert (2,3). However when the undisturbed field H
~O

is normal to the plate the position is far from clear and is the subject of this in-

vestigation. Glauert (4), Hasimoto (5), Clauser (6) and others have shown that Alfvn

waves are generated at the surface of a solid body in an MHD flow and propagate away
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from the body in directions which depend on the orientation of both the magnetic field

H and the fluid velocity U In the present case, these disturbances are first

created at the leading edge of the flat plate and propagate in a direction which

confines them, initially, within the region dominated by the normal viscous boundary

layer. Ultimately these disturbances are expected to emerge from the viscous

boundary layer region since the growth rate of the boundary layer thickness is

measured in terms of x whereas Alfvn disturbances occupy a region which grows

more like x.

A numerical integration of the full boundary layer equations, starting from the

leading edge, therefore presents a difficulty in applying a condition on the magnetic

field at the outer edge of the boundary layer. It is expected that for values of x

less than some finite value, x say, the appropriate boundary conditions at the free
c

stream edge of the boundary layer will be the conventional ones, namely that U U i
O

and H Ho in this region. However, for x > x the Alfvn disturbances emerge
C

from the viscous boundary layer and the appropriate outer boundary condition is then

the jump condition of Stewartson (7) which states that [H. i] U must be
O

satisfied across the viscous boundary layer. At first sight it would appear that a

full numerical integration should incorporate these conditions in the’appropriate

regions, changing from one to the other at the location x x However, as will
C

be shown, this does not appear to be the case.

An early investigation of the boundary layer on a flat plate with a normal

magnetic field was that of Rossow (8) who assumed that the magnetic Prandtl number

was so small that the induced magnetic field could be ignored and obtained

a series solution which is valid near the leading edge of the plate, x 0 Lewis

(9) obtained an analytical solution for this problem which is valid at large

distances x along the plate. Using an explicit numerical procedure he was able to

match his solutions for small and large values of x In the case of finite

magnetic Prandtl number, Sears (I0) has obtained an asymptotic solution which is valid

for large values of x and Hildyard (ii) one appropriate near the leading edge. The

paper of Sears was essentially in response to the earlier work of Clauser (6) who

stated that ’no boundary layer of wake phenomena can possibly exist’. Sears
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demonstrated that a boundary layer solution can be obtained by an aymptotic analysis

for large values of x Sears imposed the Stewartson jump condition and therefore

his solution cannot be matched onto the solution obtained by Hildyard (ii) who assumed

that all the magnetic field disturbances were contained in the viscous boundary layer,

ie. Hildyard imposed ..i 0 at the outer edge of the boundary layer.

2. EQUATIONS AND SOLUTIONS

The equations governing the steady MHD flow of an incompressible fluid are

(U. V)U =_I Vp + uV2U + u__ j ^H (1)

j (E + U^H) V ^H (2)

v.u V.H O (3)

(4)

where p, j and E are the pressure, current density and electric field strengths

respectively. The problem under consideration is that of the flow in the boundary

layer on a thin flat plate y 0 x > O (x,y,z are rectangular Cartesian

coordinates) such that the undisturbed flow has U (U ,0,0) and H (O,Ho,O)
In order to satisfy equations (3) the stream function and magnetic scalar

potential A are introduced such that

O) and H (3A 3A O)u. (’ x’ ’- -’ (5)

from which it is easily shown that E (0, O, -UoHo). Thus the boundary layer

equations to be solved become_
2 _2 s__

/ s(y x3y x y2 y3
A 2A A 2A)x -y xy (6)

2A @ A @ A)
y2 y x x y (7)
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where all the quantities have been non-dimensionalised with respect to their main

stream values and B H2/0 U2
O O

The problem now reduces to solving equations (6) and (7) subject to the boundary

conditions of no-slip on the plate and from symmetry (for a boundary-layer on each

side of the plate) H O on y O As y u U and
X O

H H. i Ke-- H where K can take the value 0 or I depending on whether
X O

the outer condition chosen is that of Hildyard (K O) or Sears K i).

To obtain a solution near x O the Blasius type variables

x (q,x) A x + xy (q,x) (8)

where q y/x (9)

are introduced. The boundary-layer equations then become

a’y" a2y) + (-x- ) (in)ax r2 2_I

(y-+ + x (l-Try) + x a--f- a- (ii)

subject to the boundary conditions

aqb
1 rl x 0

arl arl

(12)

The parabolic (in x) partial differential equations (IO) and (Ii) are effectively

5th order in and hence the five boundary conditions in (12) along with the

detailed knowledge of the solution at some given value of x xI say, are

sufficient to determine the solution for all values of x x Near x O

we look for a solution of the form

qb(n,x) qbo(n) + qbl(n) + x qb2(n) +

y(n,x) Yo (n) + Y1 (n) + x y2(n) +

(13)
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Substituting expressions (13) into equations (I0) and (II) and equating powers

of x results in a set of ordinary differential equations. For given values of e

and B, these equations can be solved numerically whereas if e 1 or e << 1

then the method of matched asymptotic expansions can be used as described by Glauert

(2)

The Sears solution, valid for large values of x is given by

u U i exp(-y-)]o
(14)

The series expansion for small values of x can now be used as the starting

point for a numerical integration of the full boundary layer equations (I0) and (Ii).

The integration is continued into the region where x can be considered large, in

the sense of Sears using a Newton’s method in the x-direction as described by

Merkin (12). The errors arising from using finite differences were kept small by

using a variable step length.

As indicated earlier, the first attempt was to take K O for x In

this case for all values of and B the function o is the Blasius function and

Yo O Thus o’’(0) O.3321. Because of the large amount of computing time

required for each computation only a few solutions were obtained for different values

of and 6. Since they all exhibited the same general properties only the results

for 6 are presented here. With K 0 the solution was obtained by a

step-by-step integration for increasing values of x in the expectation that the

numerical results would indicate when to revert to the Stewartson jump condition

(K i). Figure 1 shows the variation of the non-dimensional skin friction

I 82 and the non-dimensional y-component of the magnetic field
r12 Irl=O

---Y- x __26) at the plate n 0 as a function of x Although this
2x dE

shows that the skin friction appears to be approachin the Sears solution the y

component of the magnetic field is far from being unperturbed from its main stream

value. Figure 2 shows the variation of the non-dimensional x component of magnetic
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field (H /H as a function of n at several stations of x This shows that
x o

this component of magnetic field is continuing to increase with increasing values of

x and that the boundary layer thickness continues to grow as x All variables

show no indication that the solution is going awry and consequently there was no means

of deciding when to reve to the Stewartson jump condition.

By contrast, pursuing the integration from x 0 and applying the condition

K I immediately it was found that the boundary layer solution as described by

I
Sears was indeed approached. For K i 8 functions o I

’’(O) O.1922, i’’(0) 0.0772Yo and YI were computed, giving in particular, o
Yo(O) 2.0271, i(0) 1.0701. The variation of the non-dimensional skin friction

and the non-dimensional y-component of the magnetic field at the plate 0 are

presented in Figure 3. This shows how, as x is increased, the asymptotic values of

these quantities, as predicted by Sears, are being approached. The numerical

integration was carried on up to x I00 by which time the numerical results were

indistinguishable from the Sears results. A further check on the numerical solution

is afforded by using the results given in (15). It was found that the two term

series solution and the full numerical solution agree very well for small values of

x. The approach to the asymptotic profiles for the x-component of velocity is shown

in Figure 4 and similar profiles exist for the x-component of magnetic field.

Thus if the appropriate boundary conditions are chosen for the magnetic field,

at the plate and at large distances from the plate, then the solution presented by

Sears will be approached. If however, one enforces the boundary conditions that the

x-component of the magnetic field is zero at y O and as y a solution may be

obtained which is valid at small values of x but the boundary layer continues to

grow as x is increased and the Sears asymptotic solution is no longer approached.

It is clear therefore that the equations (IO) and (ii) can be integrated step

by step for given values of E and given and at some station of x and

the five boundary conditions at some stations of This has been mathematically

achieved here by taking the boundary conditions (12) with K O and K i and o
and o as given in expressions (13). Mathematically other ’solutions’ could be

obtained by taking other magnetic boundary conditions, e.g. a boundary condition on
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H on the plate rather than H could have been assumed. Physically if H O
y x x

on y O then the solution must satisfy the Stewartson jump condition for x I

if a boundary layer solution is to exist and hence the boundary conditions (12) with

K I must be enforced for x >> i However, for x << i the Alfvn disturbance

is still confined to within the boundary layer and hence the appropriate boundary

conditions are (12) with K O for x I The results obtained here show that

one can integrate the parabolic partial differential equations (12), with the

appropriate starting values for and y for x I step by step without any

indication of the fact that the Alfvn disturbance has reached the outer edge of

the boundary layer. In general, K must be a function of x which depends on e

and B and hence if K could be determined then a full solution which satisfies

the boundary conditions for x i and x I should be possible. It is not

easy to see how this variation of K with x can be achieved.
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