THE DUAL OF THE MULTIPLIER ALGEBRA OF PEDERSEN'S IDEAL

KELLY McKENNON

Department of Pure and Applied Mathematics Washington State University Pullman, Washington 99164

(Received November 24, 1980)

<u>ABSTRACT</u>. It is shown that the dual of the multiplier algebra of Pederson's ideal is not always spanned by its positive elements. <u>KEY WORDS AND PHRASES</u>. Multiplier algebra, Pederson's ideal. <u>1980 MATHEMATICS SUBJECT CLASSIFICATION CODE</u>. Primary 46L05.

1. INTRODUCTION.

In [1] Lazar and Taylor study the multiplier algebra $\Gamma(K)$ of Pedersen's minimal dense ideal K of a C*-algebra A. Equipped with its canonical strict topology, $\Gamma(K)$ is a locally convex space, and Lazar and Taylor have demonstrated that the dual $\Gamma(K)$ ' can be identified with the set of all linear functionals A·F + G·A where A $\in K^+$ and F, G $\in A'$ ([1] 6.1). They have also shown that, under this identification each positive element of $\Gamma(K)$ ' is of the form A*·F·A for some A $\in K$ and F $\in A'$ ([1] 6.5). This note answers negatively their question, whether or not $\Gamma(K)$ ' is the span of its positive elements.

2. MAIN RESULTS.

Let H denote the Hilbert space $l_2(\mathbf{Z})$, <,> its inner product, and $\{b_n\}_{n \in \mathbf{Z}}$ its canonical Hilbert basis. For vectors v, w \in H, let v \otimes w* denote the linear operator sending each x \in H to <x,w>v. Denote by $(B, *, \|\|_p)$ the C*-algebra of all bounded

linear transformations of H. The identity transformation I has a decomposition P + Qwhere P is the orthogonal projection of H onto $\ell_2(N)$ and Q the orthogonal projection onto $\ell_2(Z/N)$.

Let A be the C*-algebra of all bounded sequences A $| \mathbf{N} \rightarrow B$ such that

$$\lim_{n \to \infty} \|P A_n\|_B + \|A_n P\|_B = 0.$$
 (2.1)

We write || || for the norm on A:

$$\|\mathbf{A}\| = \sup_{n \in \mathbf{N}} \|\mathbf{A}_n\|_B \quad (\forall \mathbf{A} \in A).$$

Let K be the set of all $A \in A$ such that

$$\{n \in \mathbf{N} : \|PA_n\| + \|A_nP\| \neq 0\} \text{ is finite.}$$
(2.2)

PROPOSITION. Pedersen's ideal in A is just K.

PROOF. That K is an ideal is trivial.

For each A \in A and n \in W, let A⁽ⁿ⁾ be the element of K defined by A⁽ⁿ⁾ = A (\forall m = 1 2 ... n) A⁽ⁿ⁾ = 0 A O (\forall k = n + 1 n + 2)

$$A_{m}^{(n)} = A_{m} (\forall m = 1, 2, ..., n), A_{k}^{(n)} = QA_{k}Q (\forall k = n + 1, n + 2, ...).$$

Then, for each $A \in A$,

$$\frac{\operatorname{Iim}}{n} \|\mathbf{A} - \mathbf{A}^{(n)}\| = \frac{\operatorname{Iim}}{n} \sup_{k \ge n} \|\mathbf{A}_{k} - \mathbf{Q}\mathbf{A}_{k}\mathbf{Q}\|_{B} \le \frac{\operatorname{Iim}}{n} \sup_{k \ge n} \|\mathbf{P}\mathbf{A}_{k}\mathbf{Q}\|_{B} + \|\mathbf{Q}\mathbf{A}_{k}\mathbf{P}\|_{B} + \|\mathbf{P}\mathbf{A}_{k}\mathbf{P}\|_{B} = 0$$

by (2.1), which proves that K is dense in A.

Since the minimal dense ideal of A contains all positive elements $A \in A$ such that AB = A for some $B \in A^+$, it will suffice in showing K is Pedersen's ideal to demonstrate that K is spanned by elements of this sort. Since K is evidently spanned by its positive elements, it will be sufficient to examine an arbitrary positive element A of K. For such $A \in K^+$, there exists $n \in N$ such that $PA_m = 0 = A_m P$ for all m > n. Let $B \in A^+$ be defined by

 $B_k \equiv I \quad (\forall k = 1, 2, \dots, n), B_m \equiv Q \quad (\forall m = n + 1, n + 2, \dots).$ Then, since $A_m = QA_mQ$ for all m > n, AB = A. Q.E.D.

Let F be the bounded linear functional on A defined by

$$F(A) \equiv \sum_{n=1}^{\infty} \langle A_n(b_1), b_{-1} \rangle \cdot 2^{-n} \qquad (\forall A \in A).$$

Let $D \in K$ be the partial unitary operator defined by

$$D_n \equiv Q \quad (\forall n \in \mathbb{N}).$$

For G \in A' and A \in A, the linear functionals A·G and A·G·A are defined by

$$A \cdot G(B) \equiv G(AB)$$
 and $A \cdot G \cdot A(B) \equiv G(ABA)$ ($\forall B \in A$)

Let S be the linear span of the set of all elements of A' of the form $A^* \cdot G \cdot A$ such that $A \in K^+$ and $G \in A'$.

THEOREM. The linear functional $D \cdot F$ is not in S.

PROOF. Assume false. Then there exists a finite subset F of K^+ and a map G|F + A' such that

$$D \cdot F = \sum_{\mathbf{A} \in F} A^* \cdot G_{\mathbf{A}} \cdot \mathbf{A}.$$
 (2.3)

Choose $n \in \mathbf{I}$ such that

$$PA_{m} = A_{m}P = 0 \qquad (\forall A \in F; m = n, n + 1, \ldots).$$

Let $B \in A$ be defined by

$$B_n \stackrel{\Xi}{=} b_{-1} \stackrel{\otimes}{\to} b_1^* \quad \text{and} \quad B_k^{\Xi} \stackrel{\Xi}{=} 0 \quad (\forall k \in \mathbf{M} : k \neq n),$$

and note that

$$QB_n = B_n$$
 and $QB_n Q = 0$.

We have

$$D \cdot F(B) = F(DB) = \langle (DB)_n(b_1), b_{-1} \rangle 2^{-n} = 2^{-n} \neq 0.$$
 (2.4)

For each $A \in F$, we have $A_n = QA_nQ$; therefore, since $(b_{-1} \otimes b_1^*)Q = 0$, it follows that $B_nA_n = 0$. Thus

$$BA = 0 \quad \text{and}$$
$$A^* \cdot G_A \cdot A(B) = G_A(A^*BA) = 0 \quad (\forall A \in F). \quad (2.5)$$

But (2.3), (2.4), and (2.5) are incompatible. Q.E.D.

REFERENCE

 Lazar, A. J., and Taylor, D. C., Multipliers of Pedersen's Ideal, Mem. Am. Math. Soc. 169, (1976).