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ABSTRACT. It is shown that the dual of the multiplier algebra of Pederson’s ideal is

not always spanned by its positive elements.
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I. INTRODUCTION.

In [I] Lazar and Taylor study the multiplier algebra F(K) of Pedersen’s minimal

dense ideal K of a C*-algebra A. Equipped with its canonical strict topology, F(K)

is a locally convex space, and Lazar and Taylor have demonstrated that the dual F(K)’

can be identified with the set of all linear functionals A-F + G-A where A K+ and

F, G 6 A’ ([I] 6.1). They have also shown that, under this identification each

positive element of F(K)’ is of the form A*-F-A for some A K and F 6 A’ ([I] 6.5).

This note answers negatively their question, whether or not F(K)’ is the span of its

positive elements.

2. MAIN RESULTS.

Let H denote the Hilbert space 2(Z), <,> its inner product, and {bn n6Z
its

canonical Hilbert basis. For vectors v, w 6 H, let v (R) w* denote the linear operator

sending each x H to <x,w>v. Denote by (B, * ,II
B

the C*-algebra of all bounded
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linear transformations of H. The identity transformation I has a decomposition P + Q

where P is the orthogonal projection of H onto 2(I) and Q the orthogonal projection

onto 2 (Z/l).

Let A be the C*-algebra of all bounded sequences A If B such that

lim liP AnllB + IIAnPllB 0.
n-oo

We write for the norm on

flAIl sup IIAnlIB (V A 6 A).
nN

Let K be the set of all A 6A such that

(2.1)

{n I liP Anll + IIAnPII # 0} is finite.

PROPOSITION. Pedersen’s ideal in A is just K.

(2.2)

PROOF. That K is an ideal is trivial.

For each A and n ll, let A (n)
be the element of K defined by

Am(n) Am (Vm 1,2 n), (n) QQ (Vk n + i, n + 2 ).

Then, for each A A,

li-- lIA- A(n)ll lira sup lIAk QQI]B -<
n n k>n

lim sup IIPQIIB + IIQPIIB + llPPllB 0
n k>n

by (2. I), which proves that K is dense in A.

Since the minimal dense ideal of A contains all positive elements A A such

that .B A for some B N+, it will suffice in showing K is Pedersen’s ideal to

demonstrate that K is spanned by elements of this sort. Since K is evidently spanned

by its positive elements, it will be sufficient to examine an arbitrary positive

element A of K. For such A K+, there exists n 6 N such that PA 0 A P for all
m m

m > n. Let B A+ be defined by

B
k

I (Vk 1,2 n), B
m

Q (Vm n + I, n + 2 ).

Then, since Am QAmQ for all m > n, AB A. Q.E.D.

Let F be the bounded linear functional on A defined by

F(A) 7. < A (bl)’ b > 2-n
n -i

(VA A).
n=l

Let D 6 K be the partial unitary operator defined by

D Q (Vn ).
n
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For G A’ and A A, the linear functionals A-G and A.G.A are defined by

A’G(B) G(AB) and A’G’A(B) G(ABA) (VB A).

Let S be the linear span of the set of all elements of A’ of the form A*-G.A such

that A K+ and G A’.

THEOREM. The linear functional D-F is not in S.

PROOF. Assume false. Then there exists a finite subset F of K+ and a map

GIF-A’ such that

D-F E A*.GA.A.
A{F

(2.3)

Choose n N such that

PA --AP=0
m m

Let B A be defined by

(VA F; m n, n + I, ...).

and note that

B b bl* and B
k

0 (Vk k n)n -I

QBn Bn and QBnQ 0.

we have

D-F(B) F(DB) <(DB)n(bl), b_l > 2-n 2
-n # 0. (2.4)

For each A F, we have An -n-QAQ; therefore, since (b_l (R) bl*)Q_ 0, it follows

that B A 0. Thus
n n

BA 0 and

A*-GA-A(B) GA(A*BA) 0

But (2.3), (2.4), and (2.5) are incompatible.

(A F).

Q.E.D.

(2.5)
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