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ABSTRACT. Given a Banach algebra A, the compactum of A is defined to be the set

of elements x g A such that the operator a xax is compact. General properties

of the compactum and its relation to the socle of A are discussed. Characteriza-

tions of finite dimensionality of a seml-slmple Banach algebra are given in terms

of the compactum and the socle of A.
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i. INTRODUCTION.

Familiarity with Banach algebras is assumed. An elementary survey of this

area is Rickart [5], which is accessible to anyone with a basic knowledge of mea-

sure theory.

Let A be a Banach algebra. For x e A let T be the operator on A defined byx

Tx(a)_ xax. Define the compactum of A to be the set C(A) {x e A: T is a com-
E

pact operator}. In [i], J.C. Alexander investigated the properties of a Banach

algebra A which satisfies A C(A). He called this type of algebra a compact

Banach algebra. The concept was also considered by Erdos, Giotopoulos and Lambrou

[2]. It has its origin in a result by Vala which states that if X is a Banach

space and T and T’ are non-zero elements of B(X), then the operator S TST’ is

compact on B(X) if and only if both T and T’ are compact on X [3].
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The purpose of this paper is to look at some general properties of C(A) and to

give a characterization of finite dimensionality for a semi-simple Banach algebra

A, using C(A). The latter result generalizes a theorem of A.W. Tullo [4].

2. GENERAL PROPERTIES.

If A is a Banach algebra with minimal left and right ideals, and if the sume of

the minimal left ideals coincides with the sum of the minimal right ideals, then the

resulting ideal is called the socle of A. We let S(A) denote the socle of A. If

X is a Banach space then B(X) will stand for the algebra of bounded operators on

X and K(X) will denote the subalgebra of B(X)’consisting of compact operators. If

A is an algebra and x e A, then (X) will denote the spectrum of x in A.

Our terminology is consist’ent with that of [5], and all algebras considered

are over the field of complex numbers C. We recall again that a Banach algebra A

is compact if A C(A).

PROPOSITION I. Let A be a Banach algebra. Then,

a) C(A) is a closed set.

b) If x g C(A) then the ideals xA and Ax are both contained in C(A).

c) If B is a closed subalgebra of A such that B C(A), then B is a

compact Banach algebra.

PROOF. Let (Xn) be a sequence in C(A) which converges to x. Then for each

a A we have II (rx r (a) II xax x ax II < IIxax x axll + II x ax x ax
x n n n n n n
n

[l all (llx[I + [[ Xnl [) IIx Xnl I. Hence ITx r
x

< (llx[l+[IXnll) llx- Xnl[ where [’1
n

denotes the operator norm. It follows that T conver’ges to T and since T is
x x x
n n

compact for all n, we get T is compact. Therefore, x g C(A). This proves (a).
x

If x g C(A) and y A, then T is the composition of the maps a / ya, T and
xy x

a ay, and since T is compact it follows that T is compact, i.e., xy g C(A).x xy

Similarly yx e C(A), which proves (b). Part (c) follows from the definition of

compact Banach algebra and the fact that if x g B C(A), then the restriction of

T to B is still compact.x

PROPOSITION 2. (a) If A is finite dimensional then C(A) A. (b) If X is
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a Banach space then C(B(X)) K(X).

PROOF. Part (a) is obvious, while part (b) follows by Vala’s theorem which

states that T, T’ g K(X) if and only if the map S / TST’ is compact on B(X) [3].

The next two lemmas appear in [i]. We state them here without proofs.

LEMMA i. If A is a compact Banach algebra which is not a radical algebra,

then A contains an idempotent e such that eAe is finite dimensional [i, 4.3].

LEMMA 2. Let A be a semi-slmple Banach algebra and x g A. Then S(A) exists

and x g S(A) if and only if T has finite rank (i.e., xAx is finite dimensional).
x

PROPOSITION 3. Let A be a semi-slmple Banach algebra. Then C(A) is nonzero

if and only if S(A) is nonzero, and in this case S(A) c C(A).

PROOF. Suppose that C(A) is nonzero. Choose x g C(A). Then the right ideal

xA is contained in C(A), by Proposition l(b). Let J be the closure of xA. Then

J C(A) since C(A) is closed. Therefore, by Proposition l(c), J is a compact

Banach algebra, and hence, by Lema i, it contains an idempotent e such that eJe is

finite dimensional. But since eA J, we have eAe e(eA) e eJe, and hence eAe

is finite dimensional. It follows, by Lema 2, that e g S(A).

If S(A) is nonzero then, applying Lema 2, we get S(A) C(A).

PROPOSITION 4. If A is a Banach algebra and x E CA), then 0 is the only

accumulation point for (x). Moreover, if % (x), % 0 then there exists y g A

commuting with x such that Tx (y) 2y.

PROOF. First note that if A has no identity and AI is the Banach algebra

obtained by adjoining an identity to A in the usual manner, then the perator T
x

on AI is still compact. Moreover, (x) as an element of AI or as an element of A

is the same. Therefore, we may assume that A has an identity.

Let C be a maximal commutative subalgebra containing x and let T be the

restriction of T to C. If % (T), then there exists S g B(C) such that (% T)S=
x

I, i.e., ()t- T) Sy y for all y C. This is equivalent to ()t- x2) Sy y. If

-i
x
2

we choose y g C invertible, then (Sy) y is an inverse for % That is

% (x2). This says that @(x2) (T). Since T is compact, the conclusion follows

from the general theory for compact operators and the spectral mapping theorem.
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3. CHARACTERIZATION OF FINITE DIMENSIONALITY.

For the remainder of this paper we will give a characterization of finite dl-

mensionality for semi-simple Banach algebras. Our result generalizes a theorem of

A. W. Tullo which states that a semi-simple Banach algebra A which satisfies A=S(A)

is finite dimensional [4]. Before stating and proving our main theorem we need two

LEMMA 3. Let A be a semi-slmple Banach algebra such that xC(A) =(0)implles

x 0. Suppose that J # (0) is a closed right ideal in A. Then J contains an

idempotent e such that e e S(A).

PROOF. Choose x e J and y g C(A) such that xy # 0. Then, by Proposition l(b),

xyA C(A). We also have xyA J. Since A is semi-simple, it follows that xyA is

not a radical algebra. Hence, by Lemma i, xyA contains an idempotent e such that

exyAe is finite dimensional. But e e xyA implies that eA c xyA, and hence

eAe e (eA) e exyAe. Wherefore, eAe is finite dimensional, and it follows from

Lemma 2 that e S(A).

The next lemma appears in [6], and we include it here for the sake of complete-

ness. We recall that an idempotent e in an algebra A is minimal if eAe is a divis-

ion algebra. This is equivalent to saying that eA (Ae) is a minimal right (left)

ideal [5]. By an idempotent we always mean a non-zero one.

LEMMA 4. Let A be a semi-simple normed algebra. If e and f are minimal

idempotents in A then eAf is at most 1-dimenslonal.

PROOF. Suppose that eAf # 0 and choose x such that exf # 0. Then exfA eA

by minimality of eA. Moreover, by the Gelfand-Mazur theorem, fAr fC where C is

the field of complex numbers. It follows that eAf exfAf exfC. That is eAf is

1-dimensional.

THEOREM. Let A be a semi-simple Banach algebra such that xC(A) =(0)implles

x 0, then the following statements are equivalent,

a) A is finite dimensional.

b) (A. W. Tullo) A S(A).

c) S(A) C(A).

d) S(A) is closed.
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PROOF. If (a) holds then T has finite rank for every x E A. Therefore,
x

A S(A) by Lemma 2. If (b) holds then(c) follows from Proposition 3. The fact

that C(A) is closed shows that (c) implies (d). It remains to show that (d) implies

(a).

Suppose that S(A) is closed. We first show that A cannot contain an infinite

set of pairwise orthogonal idempotents. Suppose that to the contrary such a set

{en}=I exists. Let Ji ei A. Then Ji is a non-zero closed right ideal for each

i. It follows by Lemma 3, that each Ji contains an idempotent fi such that figS(A).
Let gi fi ei" Then gig S(A), and since fi ei fi it follows that gi is an

idempotent and {gi}i=l is a pairwise orthogonal family. Note that gi # 0, other-
n gi2 " Then E S(A)wise fi fi fi ei fi gl fi 0. Now let Yn /

2
i Yn

Since S(A) is closed It follows that y iim Yn S(A). But we have
n-o i=l 2illgill

2illgifly gi y gi" Therefore, the set {gi is contained in yAy, and since it is an

infinite set and linearly independent by the orthogonality of its elements we have

yAy is infinite dimensional. This contradicts the fact that y g S(A), by Lemma 2.

Hence, A contains at most a finite set of pairwise orthogonal idempotents.

Now let {el, en} be a set of pairwise orthogona’l idempotents of maximal

possible cardinality. Then each e
i

is minimal. Otherwise if el, say, is not mini-

mal, then elA is not a minimal ideal, hence it is not a minimal closed ideal

[5; 2.1.10]. Thus elA properly contains a closed right ideal I which, by Lemma 3,

contains an idempotent f, necessarily different from e
I

and f elf. Then {fel,
e
I fel, e

2 ,... en} is a pairwise orthogonal family of idempotents which contra-

dicts the maximality of n.

Now let f eI + + e We claim that f is an identity for A. If (i f)
n

A # 0, then since it is a closed ideal, Lemma 3 implies that it contains an idem-

potent g (i f) g. Let h g(l f). Then h is an idempotent which is ortho-

gonal to e. for i i, n. Then by maximality of n, we get h 0. Hence g
1

2
g g(l f) g hg 0 which is a contradiction. Hence (I f) A 0. Noting

that the conclusion of Lemma 3 holds for closed left ideals as well, a similar
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argument as the above gives A(I f) 0. Therefore f is an identity of A. It

follows that A--fAf (= el)A (= ei)= ,3lei Ae.. But, by Lemma 4
i J

e
i Ae.3 is at most 1-dimensional for i,j i, n. Hence, A is finite dimensional.

This shows that (d) implies (a) and concludes the proof of the theorem.
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