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ABSTRACT. A functional equation of the form l(x+Y) + 2(x-Y) [. ei(x) 8i(y),
1

where functions i,2,i,8i, i l,...,n are defined on a co:,utatlve group, is

solved. We also obtain conditions for the solutions of this equation to be matrix

elements of a finite dimensional representation of the group.
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i. INTRODUCTION.

Consider the functional equation

l(x+Y) + 2(x-Y) al(X)l (y) + + (x)8 (Y)
n n

(i.i)

where l,#2,ei, Si, i I, n are functions given on a commutative group , tak-

ing values in a field of characteristic zero.

Clearly, if f(x)

f (x+y)-f (x-y)

l(X)-2(x)’ g(x) l(X) + 2(x), then

m

i(x) [8i(y)-8i(-y)] . hj(x)kj(y)
i:l j =I

(1.2)

and

g(x+y) + g(x-y)
n p
7, ei(x) [8i(y)+8i(-y)] , ui(x)vi(y),

i=l i=l
(1.3)



316 A.L. RIFKHIN

where the functions hj,kj, j 1 m and ui,vl, i i ,p are linearly inde-

pendent. Therefore it suffices to consider the case when % 2 or % =-% in

(I.i). Note that linear independence of h. and uj implies k. (-y) -kj (y), j i,
3 3

m and vi(-y) v.(y),1 i i p.

The equation (i.i) can be viewed as a generalization of D’Alembert’s (cosine)

functional equation

#(x+y) + #(x-y) 2 (x)#(y), (1.4)

which has been much studied (cf Aczel [i, p. 176], Corovei [3], Hosszu [6],

Kannappan [7], O’Connor [12], Rejto [14]). It also arises in statistical applica-

tions (Rukhln [15]).

The functional equations (1.2) and (1.3) follow from the equation

(x+y) al(x) Bl(y) + + a (x)B (x)
m m

(1.5)

which also was an object of detailed study. Clearly (1.5) implies that the space

obtained by taking finite linear combinations of translates of is of finite di-

mension, and this of course means that is a matrix element of a finite dimension-

al representation of the group . It is known (cf Engert [4], Laird [8], Stone

[17]) that, for a locally compact group, every finite dimensional (or only closed

in the space of all continuous functions) translation invariant subspsce consists

of exponential polynomials. In other terms #. must have the form
n

(x) L Pi(x) gi(x),
i=l

where gi are multiplicative homomorphisms of into and Pi are polynomials in

different additive homomorphisms of Q into . Actually, the solutions of the

functional equation (1.5) are known to be of such a form in a more general sit-

uation when Q is a groupoid or a semigroup and is a commutative ring (see Aczel

[2], McKiernan [I0], [ii]). However, as we shall see, not every exponential poly-

nomial is a solution of (1.5) in the nonlocally compact case.

In Section 3 we obtain the general form of the solutions f and g of equa-

tions (1.2) and (1.3). These solutions are expressed as linear combinations of

matrix elements of inequivalent finite dimensional representations of the group
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and also of terms involving homomorphlsms of into a vector space n over the

field and homomorphisms of into additive matrix group over . Section 2 con-

tains some preliminary results about polynomials on Abelian groups. The discussion

of the main result is given in Section 4, where the equations (1.2) and (1.3) are

proved to have all solutions being exponential polynomials. We also prove that

while every solution of (1.2) is a solution of (1.5), there are solutions of (1.3)

which are not matrix elements of any finite dimensional representation of , i.e.

which do not satisfy (1.5), and give sufficient conditions for a solution of (1.3)

to have such form.

2. POLYNOMIALS OVER COMMUTATIVE GROUPS.

Let De a finite dimensional vector space over the field. (In this paper,

will be a vector space of all nn matrices over the field , or the vector
n

space of dimension n on. . If is an -valued function defined on the Abe-

lian group q, then L(x), x E is the translation operator, L(x)(’) (’+x).

Thus L is a regular representation of which acts in the linear space spanned by

the translates of the function . The function is called a polynomial if, for

some n, (L(x)-l)n+l(y) E 0 for all x, y E . The smallest number n for which

this identity holds is called the degree of the polynomial.

Thus a polynomial of degree one satisfies the identity

(x+y) + (x-y) 2(x).

If 2 = this condition implies that (x) (x) + c, where c ,
Horn (q,); i.e., X(x+y) (x) + (y) for all x, y q.

A polynomial @ is said to be homogenous, if

(e (x) -l) n@ (. nl@(x).

The following elementary results [9] will be used in Section 3.

If is a homogenous polynomial of degree n, then for all integer j

(jx) jn(x), x q.

If is a polynomial of degree n, then (x) (Lx)-l)n(y) does not de-

depend on y and is an homogenous polynomial of degree n in x.

If @ is a polynomial of degree n, then (L(Xl)-l)...(L(xj)-l(x) is a poly-
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nomial in x of degree n-j.

4 If is a polynomial of degree n, then

(x) n (x) + + 0 (x),

where j (x) is a homogenous polynomial of degree j, j=O n. One has

i
n(X) -. (L(x)-l)n(")

and for j=n-i O,

1 j
jCx) j.---CLCx)-l) (f(-) n (.1 j+l(.)).

5. If 9 is a homogenous polynomial of degree n, then x) X(x,... ,x) where

X(XI ,xn) is a symmetric function of Xl,...,x and for fixed
n

x2 Xn,X(-,x2 Xn) 6Horn

If is a polynomial of even degree and 2 then in all formulas

above L (x)-I can be replaced by L (x/2)-L (-x/2).

If k 6 n and k E n, where *n is the dual space, then <h,k> will always

denote the value of the linear functional k on the element h. With this conven-

tion, equation (1.2), for instance, can be rewritten as

f(x+y) f(x-y) <h(x),k(y)>, (2.1)

where h(x). E m, and k(y) m. Also, At will denote the transpose of a linear

transformation A.

3. THE .AIN RESULT.

A structure theorem for the solutions of the functional equations (1.2) and

(1.3) is obtained in this Section.

Theorem I. Assume that is a commutative group such that 2 ] ]. A

function f taking values in an algebraically closed field of characteristic

zero is a solution of the equation (1.2) with linearly independent functions

hj,kj, j I ,m if, and only if, there exist nonnegatlve integers

mI mR,mI + + mR m such that

f(x) <S(X)fl,X)> + <T(X)QlX)>
R

+ __[ <F (x)f
r

> + <F (-x)d r>] + c. (3.1)r r r r r’
ml-i k ml-i

kHere Hom(,ml),S(x) k-- H (x,x)/(2k+l)!,T(x)
k=

H (x,x)/(2k+2)!,where
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mI
for each y E Q H(-,y) EHom (Qml), H(x,y) H(y,x), H (x,y) 0 if

mI >_ i, H2(x,y) H(x,x)H(y,y),Ht(x,x) (y) Ht(x,y)x) for all x,y;

F r=2,...,R are pairwise inequivalent matrix representations of the groupQ of de-
r

gree mr where all eigenvalues of Fr are equal and not identically one; Qr are in-

vertible linear operators from
*mr

to mr,
*m

H(x,X)Ql QiHt(x,x),Fr(X)Qr QrFrt(X), r=2,...,R; fl mr r

mr
fr,dr r=2 R, f + d 2Qrr, r=2 R, c . Also the vectors

r r
ml S

tC(x) fI + S(X)QlX), x q span and the vectors (x)x) span

ml-1 mr*ml, C(x) Hk(x,x)/(2k)!; the spaces mr and r=2 R are spanned by
k=0

the vectors [Ft(x)-Ft(-X)rr ]r’ xE and by the vectors Fr(x)fr-Fr(-X)dr x , corre-

spondingly. The representation (3.1) is unique up to equivalence for matrices H(x,x)

and F (x), r=2 R.
r

We do not prove the next Theorem 2 since its proof is analogous to that of

Theorem i.

Theorem 2. Under assumptions of Theorem i a function g is a solution of the

equation (1.3) with linearly independent function ui,vi i=l,...,p if, and only if,

there exist nonnegative integers pl,...,pR,Pl+...+pR p, such that

g(x) <C(X)Qlgl,al> + <S(x)(x),a
R

+ <F (x)g
r

a > + <F (-x)b
r

+ c
r=2 r r r ’mr>

Here C(x) ,S(x),Fr(X),Qr and Qr have the same meaning as in Theorem i with mr re-

placed by pr,Hom(, l),br,gr mr,gr_br 2Qrar,ar r, r=2 R, cE

C
t PlThe vectors (x)aI, x span and the vectors C(X)al+ S(x)(x), x , span

Pl; the spacesPr and *Pr f=2 ,R are spanned by the vectors

(x)g
r
+ Fr(-X)b and by the vectors [F$(x)+F$(-x)]a correspondingly. The ma-F

r r r

trix functions H(x,x) and F (x) r=2 R are defined uniquely up to equivalence.r

We break up the proof of Theorem i into three lemmas.

Lemma i. Assume that the functional equation

fl(x+Y) fl(x-Y) <w(x) ,k(y)>
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has a symmetric solution fl’ fl (-x) fl (x)" Then the vector function w has the

form, w(x) Bk(x), where B is an invertible linear operator from *m to m,
Bt=B. Also k(x) Tt(x), where T is an invertible linear operator from *m to

*m and there exist nonnegative integers mI mR such that *m *ml ... mr
and the projections of onto *mr satisfy the following functional equa-

r

tion,

(x+y) + (x-y) 2Br(y)r(x).r r

Here B (y) is an upper triangular matrix of dimension m with the same diagonal
r r

elements b(r) (y)’ b(r)(y) # b(S)(y), r # s, such that QrBr(Y) Btr(y)Qr with some

t
invertible operators Qr’ Qr Qr’ r=l R, and

Br(X+y) + Br(x-y). 2Br(x)Br(y)
Proof of Lemma i. Since fl is symmetric

<w(x),k(y)> <w(y),k(x)>.

Therefore there exists an invertible linear operator B from m to m such that

B
t

B and for all x Q

w(x) Bk(x). (3.2)

Now let V denote the linear space over spanned by the translates f(-+x),

x E Q of the function f which satisfies (1.2). Then the regular representation

L(x): L(x)g g(-+), gV acts in V, and the functional equation (1.2 means

that

m
[L(y) L(-y)]f k (y)h (3 3)

j=l j ""
Here f denotes the {cyclicIvector of V corresponding to the function f(.), and

h
I

h are vectors from V which correspond to the functions hi(.) h (.).m m

If V_ denotes the subspace of V spanned by the vectors [L(y) L(-y)]f, y Q, then

it follows from (3.3) that V has dimension m.

variant under all operators L(x) + L(-x), x Q.

Also, as is easy to see, V is in-

Then,

Let A(x) denote the restriction of the operator [L(x) + L(-x)]/2 on V

m m
2 k (y)A(x)h [kj (x+y) + kj (-x+y) ]hj,
j=l

j J j=l
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so that

k(x+y) + k(-x+y) 2At(x)k(y). (3.4)

It is evident that all matrices A(x) commute. Therefore (see Suprunenko and

*mTyshkevich [18] p. 16) the whole space can be represented as a direct sum of

invariant subspaces Wr, with respect to all A(x), for r=l R. The irreducible

parts of A(x) IW are equivalent while for r # s the irreducible parts of A(x) IWr r

and A(x) IWs are not equivalent. Since the field is algebraically closed, Shur’s

lemma shows that all irreducible parts of A(x) IWr, r=l R, are one-dimensional

operators. Thus all matrices A(t) have the form A(x) T-IBt(x)T, where B(x) is

a quasi-diagonal matrix with blocks BI(X),...,BR(X) on the principal, diagonal, and

Br(x) is an upper triangular matrix of dimension mr dim Wr, r=l’’’’’R with the

same diagonal elements b(r) (r) (s)
(x),b (x) # b (x), r # s. Clearly m ml+...+mR

and all matrices B (x), r=l ,R commute.
r

Let Q TBTt. Then Qt Q, Q is invertible and QB(x) Bt(x)Q. Because of

Shur’s lemma Q QIO"" Qr where Qr is of dimension mr, and

QrBr(X) Btr(x)Qr’ r=l,...,R. Also, if k(y) Tt(y) then

(x+y) + (x-y) 2B(y)(x).

Let (y) 1(y)O... OR(y) with rQ*mr’ r=l,.." ,R be the partition of (y)

into direct sum corresponding to that of the matrix B(x). Then for r=l R

(x+y) + (x-y) 2B (y)r(X). (3.5)
r r r

It is easy to deduce from the definition of A(x) that the matrices A(x) satis-

fy D’Alembert’s functional equation

A(x+y) + A(x-y) 2A(x)A(y).

It follows from (3.6) that

B (x+y) + Br(x-y) 2B (X)Br(Y)r r

so that Lemma i is proven.

r=l ,R,

Lemma 2. For r=l,...,R

b(r)(x) IXr(x) + r(-X)]/2’
where X r

is a multiplicative homomorphism of into , Xr(X+y) Xr(X)r(y).

Xr is not identically one, then

(3.6)

(3.7)

If
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(x) [G (x) G (-x)]
rr r r

where G (x) are lower triangular matrices of dimension m with all diagonal ele-
r r

ments equal to Xr(X)’ Gr(x+Y) Gr(X)Gr(Y); QrGr (x) Gt(x)Qrr with invertible

t
Qr’ Qr Qr’ gr ( m.

Proof of Lemma 2. It follows from (3.7) that

b(r)(x+y) + b(r)(x-y) 2b(r)(x)b(r)(y).
All solutions of this D’Alembert’s functional equation are known to be of the

form (cf. Kannappan [7])

b
(r) (x) [Xr(X) + Xr(-X)]/2

where Xr is a multiplicative homorphism of q into

Xr(X+y) Xr(X)Xr(Y).
If r is not identically one there exists x0

E such that Xr(2XO) # 1 and the

matrix B2(x0)-Ir [Br(2Xo)-I]/2 is nonsingular. Moreover, one can find a nonsing-

ular lower triangular matrix G such that G
2 B2(xo)-I. Indeed

r r r

B2(xO)-I [(Xr(XO)-Xr(-XO))/212[I+Prr

where P is a nilpotent matrix, pr O.r

Thus one can put
m -I

Gr [(Xr(X0)-Xr(-X0))/2][I+Pr/2 + (-l)i+l(2i-l) ’’.. P]
i=2

2
i

i!

Clearly Gr commutes with all matrices Br(X) and QrGr GrQr.t
Now let

Gr(X G-l[Br(X)(Gr-B (x0)3 + B (x+x0)]r r r

B
r (x)-Gl [B

r
(x)B

r (Xo)-Br(X+XO) ].

It is easy to check (cf. [5]) that

G (x+y) Gr(x)Gr(y)r

and

QrGr (x) Gtr(x)Qr"
Evidently Gr(X) and Gs(x) are inequivalent for r # s and
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G (x) + G (-x) 2B (x)-G-I
r r r r [2Br (X)Br (Xo)-Br (X+Xo)-Br (-X+Xo) 2Br (x)

It is also clear that G (x) is a lower triangular matrix with all diagonal
r

elements (and hence eigenvalues) equal to Xr(X).
It follows from (3.5)

so that

(x+y) + r(Y-X) 2B (X)r (y)
r r

r (x-y) B
r
(y) r (x)-Br (x) r (Y)"

Using again (35) we see that

2B (x)[r(X+y) + (x-y)] 2B (y)r(2X)r r r

2Br(Y)[Br(x-Y)r(X+y) + Br(X+Y)r(X-y)].
Now one deduces from (3.7)

and

B (Y)Br(x-y) [B (x) + B (x-2y)]/2
r r r

Thus

Br(Y)B (x+y) [Br(X) + B (x+2y)]/2.
r r

[Br (x)-Br (x-2y) ]r (x+y) -[Br (x)-Br (x+2y) ]r (x-y).

It is easy to check that

and

Br(X)-Br(x-2y) [Gr(Y)-G (-y)][Gr(x-y)-Gr(rX+y)]/2r

-B (x) + B (x+2y) [G (y)-Gr(-y)][Gr(x+y)-Gr(-X-y)]/2.r r r

Let K {x: Xr(2X) i}. If x K the matrix G (x)-Gr(-x) is nonsingular.
r r r

Thus if y K
r [Gr(x+y)-G (-x-y)] (x-y) [G (x-y)-Gr(-X+y)]Er(X+y). It follows

r r r

that the relations x+y K and x-y K
r

imply
r

-i
[G (x+y)-Gr(-X-y) ]-i (x+y) [Gr(x-y)-Gr(-x+y) (x-y).

r r r

19other words for m K
r

r(Z) [Gr(z)-Gr(-z)]r
if z has the form z x+y with y K and x-y K orwith some vector r r r

z x+2y, x, y K We prove now that every element z K has this form.
r r

If there exists x
0 Kr such that Xr(XO) # i we put z (z+x0)-x0.

(3.8)
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Clearly z + xov Kr and x0/2 Kr. If for all X E Kr one has r(X) i, then we

show that z x+y with x, y K Indeed in this case it suffices to take
r

y z/2.

Thus (3.8) holds for all z K We prove now that (3.8) is valid for all
r

z. 6 . Let z 6 Kr, x Kr, then x + z Kr and x-z Kr. Therefore

(z+x) + (z-x) [G (x+z)-G (-x-z) + Gr(-Z-x)-Gr(X-Z)]r r r r r

2Br(X) [Gr(Z)-Gr(-Z) ]r"
From this relation and (3.5) it follows that (3.8) holds if there exists

x K such that the matrix B (x) is nonsingular. The latter condition is met if
r r

2x K If 2x 6 K for all x then because of the condition 2 it
r r

follows x Kr for all x. Thus Xr(X) i for all x contrary to our assumption.

Thus (3.8) is true for all z q and Lemma 2 is proven.

Lemma 3. Assume that Xl(X) i and let q mI. Then 1(x) is a polynomial

of degree 2q-l, which has the form

q-i
Mk(x,x).

l(X) k0
(2k+l)! l(X)"

Here M(x,y) are matrices of dimension q under the following conditions:

M(Xl+X2,Y) M(Xl,Y) + M(x2,Y) M(x,y) M(y,x), QiM(x,x) Mt(x,X)Ql
Mq(x,x) O, M2(x,y) M(x,x)M(y,y), M(x,Y)l(X) M(x,x)l(y) and

91 (x+y) =91 (x) + 91(y)’9 1 q"

Proof of Lemma 3. We have Bl(X) I + N(x), where Nq(x) 0, q mI.

Thus

and

i (x+y) + 1(x-y)-2gl(X) 2N(y) 1(x)

N(x+y) + N(x-y)-2N(x) 2N(y) + 2N(x)N(y).

The latter identity can be rewritten

[e(y/2)-e(-y/2)]2N(x) 2N(y)[l + N(x)].

Easy induction shows that for k 1,2,...

[L(y/2)-L(-y/2)]2(x) 2k(y)[I + N(x)].

Thus in particular

[L(y/2) ]-L(-y/2) ]2q-2N(x) 2q-iNq-I (y),

(3.9)
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which implies

[l-L(y)]2q-lN(x) 0;

i.e., N(x) is a polynomial of degree 2q-2. Because of the result mentioned in

Section 2,

N(x) N2q_2(x) + + Nz(x)
where for k l,...,q-i

[n(y/2)-L(-y/2)]2kN2k(X (2k)!N2k(Y);
i.e., N2k(X) is a homogenous polynomial of degree 2k, N2k(nx) n2kN2k(X).
polynomials are defined by the formulas

i
N2q-2(x) (2q-2)!

[L(x/2)-L(-x/2)]2q-2N(’)’
and for k q-2 ,i

1
N2k(X) [L(x/2)-L(-x/2)]2k[N(’)-N2q_2(’)-...-N2k+2(’)].

We prove at first that

These

q-i
Z djk[2N(x)]J/(2j).’,N2k(X)
j=k

where the coefficients djk can be found in the following way. If D is the lower

-I
triangular matrix formed by djk k < j, then D P where the elements Pjk of P

have the form

(Clearly Pjk

2k
i 2k i 2j

jP-k 2k)’
i=

(i)(-l) (i-k)
0

=0ifk>j).

Indeed,

i
N2q- 2

(x)
(2q-2)! [L(x/2)-L(-x/2) ]2q-2N(-) [2N(x)

q-I

(2q-2)

so that d i.
q-i q-i

Also,
2k

[L(x/2)-L(-x/2)]2kN2j (0) Z
i=0

2k) i
i

(-1) N2j ((k-i)x)

2k 2k i 2j
i

(-i) (i-k) N2-’3 (x)

(2k)!PjkN2j (x).
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Thus

I [L(x/2)-L(-x/2) 2k[N(0)-N2q_2 (0)- (0)N2k(X) (2k) "-N2k+2

[2N(x) ]k/(2k)!- ql p kN2j (x),
j=k+l

and it follows by induction that

djk=-
i=k+l

dji Pik J > k

J3

But these identities mean D -D(P-I) + I or DP I.

We prove now that

[L(y/2)-L(-y/2)]2N2k(X) 2[N2k(Y) + },
j<k

N2j (Y)N2 (k_j)
(x) ].

Indeed

k[L(y/2)-L (-y/2) 2
[2N(x) l(Z)

2k
[e(y/2)-e(-y/2)]2 , (2k)(_l)i (z+(i-k)x)

i 1
i--0

2k
2k) i
i

(-i) 2N((i-k)y) l(z+(i-k)x)
i=0

k-i 2k

" i )(-l)i2N((i-k)Y)[lz+(i-k)x)+l (z-(i-k)x)
i=0

k-i

(2k)(-l)i4N((i-k)y)N((i-k)X)gl(Z).
i=0

1

k-i 2k

i
(-1)i2N((i-k)Y) 1 (z)

2k, (2k)
i

(-i) 12N ((i-k) Y)N ((i-k) x) i (z)
i=0

2k
(2k)
i (-1)12N((i-k)Y)gl(Z).

Therefore

[e(y/2)-e(-y/2) 2
[2N(x)

and

[e(y/2)-L(-y/2) ]2N2k(X)

2(2k)! ipj+ikN2jy)N2iJ,
(x)+2(2k) PjkN2j (y)

q-1

djk[L(y/2)-L(-y/2)
j=k

2 [2N(x) ]J
(2j)!

(3.10)
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I-I (y)N
2=2j=k djk Pn+ijN2N i

nl

(x)+2
j=k djki PijN2i(Y

2[ N
2

(y)N2 (y) + (y)]
i<k

i (k-i) N2k

Using (3.10) repeatedly we can now establish the following formula

[L(y/2)-L(-y/2)]22k(.) 2
k

jl+...jk
[2N2(y)]k,

which gives the basic result:

N2k(Y)

(Y)...N2jk N2Jl k

i [L(y/2)-L(-y/2) ]2]q2k(-)(2k)!

2N
2 (Y)

(2k)!

(y)

(3.]_1)

Note that there exists a function M(x,y) on with values in q such that

2N2(x)=M(x,x) and it possesses the properties from the condition of Lemma 3.

Now we return to the equation (3.9) which can be rewritten in the following

forln

[L(y/2)-L(-y/2)]El(x) 2N(y)El(x).
It is easy to check that for k 1,2,...

[e(y/2)-t(-y/2)]2kEl(x) [2N(y)]kEl(x).
Thus

[ey/2)-t(-y/2) ]2qEl(x) 0,

and El(X) is a polynomial of degree 2q-l.

Analogously to previous considerations,

l(X) --92q_l(X) + +91(x),

where 2k+l(X) is an homogenous polynomial of degree 2k+l,

2k+l
}2k+l (nx) n g2k+l (x).

Note, that if 2x 2y, then 92k+i (x) 2k+l (y)’ k 0,i q-l. Thus the

function E(x) 2i(x/2) is defined.

Similarly to (3.10) we prove

q-i

2k+l(x) c [(2j+l)’]-i j

j=k
jk

[2N(x)] E(x), (3.12)

where the lower triangular matrix C formed by the coefficients Cjk, k < j has the

form C V-1. Here V is the matrix with elements
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2
Vjk (2k+l)!

2k

0
(2k) i
i

(-i) (i-k+ll2)
2j+l

Clearly v 0 if k > J.Jk
Also

[L(y/2)-L(-y/2) ]212N(x)
2[L(y/2)-L(y/2)]2

i=0 i
j

(-i)i
1 ((i-J) x+x/2)

2j
2 (i.3)(-l)12N((i_j+i/2)Y)1((i_j+i/2)x)

i=0

27 2j )i4 (i)(-1 N2n(Y)k+l(x)(i-j+l/2)2n+2k+l’z
i=0 n ,k

so that

[L(y/2)-L(-y/2)]2 2k+l(X) 2 jk_ . T2n )2i+iCkVn+i y (x)
n,1

2 N
2 (k-i) (Y)2i+l (x).

Using this identity repeatedly one obtains

[L(y/Z)-L(-y/2) 2k
%k+l(X) 2

k

ii+. .+ik+ik+l=kN2il (y)...N2ik(Y) 2ik+l+I (x)
[2N2(y)]kl(x)

and

[L(y/2)-L(-y/2) ]2k+l2k+l (x) [2N2 (y) ]kl(y). (3.13)

Therefore

k
2N

2 (x)

92k+I (x) (2k+l)! i (x)’ k=0,1 q-i

and

k

-i [2N2(x)] l(X)l(X)
k=0

(2k+l)

The relation (3.13) for k=l implies that

M(x,y) ql (y) M(y, y) ql (x).

Since l(X) is a polynomial of degree one, 4 1
is an additive homomorphism.

we proved Lemma 3.

Thus

Proof of Theorem i. Now we are able to obtain the desired formula for the
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solution of (1.2). Clearly

f(x) fl(x) + f2
where fl(x) [f(x) + f(-x)]/2, f2(x) [f(x) -f(-x)]/2.

that

It follows from (1.2)

and

fl(x+Y)-fl(x-Y) <[h(x)-h(-x)]/2,k(y)> <w(x),k(y)>

f2(x) <h(0),k(x)> <h,k(x)>

Thus fl(x) is a symmetric solution of the functional equation of Lemma i so that

the vector functions k(x) and (x) possess all properties given in the Lemmas.

Therefore

f(x)-f(0) fl(x)-fl(O)+f2(x)

<h(x/2) ,k(x/2) >

<w(x/2) ,k(x/2)>+<h,k(x)>

<Q(x/2),(x/2)> + <Th,(X)>

R

r=l

< fl’

<Qrr (x/2) ’r(x/2)>+<fr’r (x)>

ml-i
E Mk(x/2 x/2)

(2k+l)
k--0

ml-I
i [Mt (x/2,x/2)+ < E (2k+l)!

k=O

(x)>

ml-i
ql(x), Mi(x/2,x/2)

(2i+l)
i--0

R
Z {<[Gt(x/2)-Gtr(-X/2)]Qrr [Gr(X/2)-Gr(-X/2)] >

r r
r=2

+ <fr’ [Gr(X)-Gr(-X) ]>

(x)>

ml-I (x,x)]k ml-I ]k
< Mt fl (x)> + <

(2k+2)!(2k+l)!
[Mt(x,x)

Q (x) x)>
k=0 k=0

R
+ [<c ,Gr(x) Gr(-x) >+<c -d

r r>+<dr’ r r r r>

r=2

We used here the formula
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I (x/2,x/2) ] 2

=0 (2k+l)

q-i
(x,x)2 (2k+2)’

k=0

which follows from the properties of M(x,x).

The formula (3.1) follows with H(x,x) Mt(x,x) and F (x) Gt(x).
r r

We prove now that every function f of the form (3.1) satisfies the equation

(1.3). Note that for k > i

H
k
(x+y, x+y)-H

k
(x-y, x-y)

2i:k_i odd(ik)[H(x,x)+H(y,y)]i[2H(x,y)]
k-i

E (ki) i j+(k-i-l)/2 i-j+(k-i-l)/22k-iH(x,y2i:k-i odd, j<_i (j)[H(x,x)] [H(y,y)]

2k
2 < (2 [H(x,x) ]i k-l-i

H
i+l k i+l

[H(y,y) (x y). (3.14)

The last identity follows from the formula
2k

(ki)()2k-i (2p_1
i:k-i odd

2j+k-i=2p-i

which is easily obtained by comparison of coefficients of a2Pb2k-2p in expansions

(a2+b2+2ab)k-(a2+b2-2ab)k and (a+b)2k-(a-b) 2k.
Also,

(x+y,x+y) + Hk(x-y,x-y) 2
.2k. i
[2i)H (x x)Hk-i(y,y)

i<k

Using this formula, (3.14) and properties of the function H one obtains

ml-I ml-i kHk(x,x) Hf(x+y)-f(x-y) 2< fl +
k=0 (2k) k0 (2k+l) Q19(x)’

R

+ E <F (x)c (-x)d [Ft(y)-Ft(-y)] >.
r=2

r r-Fr r r r r

ml-i [H
t
(y y) ]i 9(y)>E (2i+i)

i=0

(3.15)

Thus (1.2) holds and the statements of the Theorem 1 about vectors St(x)9(x),

C(x)f
I
+ S(X)Ql.(x), Fr(X)Cr-Fr(-X)dr and [Ft(x)-Ftr(-X)]r,r xE r=2,...,R follow

from the assumed linear independence of functions hj ,kj, j=l m. The uniqueness

up to equivalence of the matrices in formula (3.1) is a corollary of the uniqueness

of the decomposition of the space m into direct sum of subspaces invariant with
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respect to commuting matrices A(x) from (3.4). Theorem i is proved.

REMARK i. If q is a topological group and f (or g) is assumed to be a contin-

uous (or only a measurable) function, then the condition 2 Q of the Theorem

1 (or 2) can be replaced by the following one: the subgroup 2 is dense in q In-

cidentally, this condition means that the dual group does not have elements of

order two.

REMARK 2. Theorems i and 2 are true if the field is not algebraically closed.

In this case all homomorphisms from into corresponding vector spaces over should

be replaced by homomorphisms from into vector spaces over a finite extension of

the field . Of course if is the field of reals, this extension coincides with

the field of complex numbers.

For instance, any solution of the classical D’Alembert’s equation (1.4) has

the form [X(X) +X(-X)]/2 where X is a multiplicative homomorphism into a simple ex-

tension of the initial field .
REMARK 3. The general form of a solution of (i.I) easily follows from Theorems

i and 2. Namely, if m and p denote the maximal number of linearly independent

functions among j (x), 8j (Y)-Sj (-Y) and among j (x), 8j (Y)+j (-Y), j=l n, re-

spectively, then

l(X) [f(x)+g(x)]/2, 2(x) [f(x)-g(x)]72

where the forms of f(x) and g(x) are given in Theorems i and 2.

4. DISCUSSION.

It follows from the proof of Theorem 1 that every solution f of (1.2) has the

fo rm

f(x) <L(x) f,A>. (4.1)

Here L is a cyclic representation of the group Q in the space V with a cyclic vec-

tor f, and the space V spanned by the vectors [L(x)-L(-x)]f, x E Q has dimension

m. The element A of the dual space V is a cyclic vector for the contragradient

L
t

representation L L (x) (-x). (Indeed we define A in the following way:

<h, A> h(0) for all h from V. Then <h, L (x)A> h(-x) and the vectors

,
L (x)A, x. 6 Q must span the whole space V .) Clearly the representation L

under these conditions is defined uniquely up to equivalence. A natural question
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is whether the representation L is finite dimensional. Bounds for the dimension

of L in terms of m are also of interest. The same question can be formulated for

the functional equation (1.3)

It was proved in [13] that for both equations the space V is finite dimension-

al if Q is a compact group. In the non-locally compact case the situation for the

equations (1.2) and (1.3) is different. Here is an example of a solution to (1.3)

with infinite dimensional representation L.

Let be an infinite dimensional Hilbert space, g(x) lxl 12
g(x+y) + g(x-y) 2( 11x 12 + lYl 12),

Then

so that (1.3) holds, and the dimension of the subspace V+ spanned by the vectors

[L (x)+L (-x) ]g, x6 Q is two, and g(x) is a polynomial of degree two.

However

g(x+y)-g(x-y) 4 < x,y >,

and the space V is an infinite dimensional one. Therefore V V(g) is an infinite

dimensional space as well. Thus not every polynomial solves (1.2) or (1.5).

Note that in this example the homomorphism of Theorem 2 is zero. Also note

that if g is an odd function, g(-x) -g(x), and g satisfies (1.3), then

g(x+y)-g(x-y) g(x+y) + g(y-x) <u(y), v(x)>,

so that g also satisfies (1.2). Thus both spaces V+and V_ have dimension p, and

the dimension of V does not exceed 2p. Of course the same remark refers to equa-

tion (1.21.

Now let f be a solution of (1.2). Then F has the form (3.11, and

F(x+y) + f(x-y) 2<C(Y)fl,St(x)(x)>
+ 2<H(x,y)T(x)QI (x), rt(y) g (y)>+2<T(X)Ql (x), (y)>

R
+ 2<T(ylQIqqy), qy)>+ <F (x)f +F (-x)d [Ft(xl+Frt(-x)] >. (4.21

r=2 r r r r r r

The proof of (4.2) is analogous to that of the identity (3.15).

Note that the second term in (4.1) has the form

<H(x,y)T(x)Q19(x),Tt(y)(y)> <H(x,x)T(x)QI (y),Tt(y) (y)>

m
1

ij (x) qi(Y)Nj (Y)’
i,j=l
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where ij (x) are elements of the matrix H(x,x)T(X)Qland 9i(y) and j (y) are coor-

dinates of the functions #(y) and Tt(y)(y).

Thus

Therefore the dimension of the space V+ does not exceed
R

mI + m21 + 2 + mr m21 + m / 2.
r=2

dim V(f) _< m + 2m + 2 _< m
2 + 2m + 2,

and the next result follows.

Theorem 3. Every solution f of the equation (1.2) has the form (4.1) with

a finite dimensional representation L, dim L < m
2 + m + 2. The representation L

is defined uniquely up to equivalence.

Theorem 4. Every solution g of the euation (1.3) has the form (4.1) with a

finite dimensional representation L under one of the two following conditions:

(i) g(-x) -g(x), x q,

< for n 1,2,(ii) dim Hom q, Pn

Under condition (i) dim L <_ 2p; under condition (ii) dim L <_ p(pp+2).
The proof of Theorem 4 under condition (ii) follows from the following for-

mua valid for any solution of (1.3)

,S
t

g(x+y)-g(x-y) 2<H(x,y)S(X)QlaI (Y)al>+2<S(y)(y) ,C
t
(x)al>

R
+ <[Fr(x)gr-Fr(-X)br [Ftr(Y)-Ft(-y)]a >

r r
r=2

This identity implies, that the dimension of the subspace V is less or equal to
R

+ Pl + Pr p + PIpPlPPl r=2 Pl

Therefore

dim V(g) <_ p + Pl
and Theorem 2 follows.

ppl+l +2),< p (Pp

Assume now that is a topological group and continuous solutions of equations

(1.2) and (1.3) are considered. The (x) 0 for all x belonging to a compact sub-

group of Q. Therefore the first term in the formula (3.1) vanishes if is a com-

pact group.

If the group does not contain nontrivial compact groups, then any matrix

homomorphism F(x) has the form F(x) exp{H(x)} where H E Horn (,). (cf. [5p.
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393] for one dimensional result.) In this case, the power series for, say,

[F(x)+F(-x)]/2 bears some resemblance to the function C(x) and explains the struc-

ture of the latter.

Thus if G is a compact commutative group, it follows from Theorem i, that

every solution of (1.2) has the form

f(x) [ [ckXk(x)+dkXk(-x) ],
k=l

where Xk(X+y) Xk(X)Xk(Y), k=l m are different multiplicative homomorphlsms

of q. The same is true for equation (1.3).

As another application of Theorems i and 2 notice that every solution of (1.2)

or (i. 3) is an exponential polynomial. (However, as we noticed, not every exponen-

tial polynomial can be a solution.) Indeed, the proof of Theorem 1 shows that

<S(x)fI, (x)> and <T(X)Qlg(X),9(x)> are polynomials in components of (x) of degree

2m and Fr(X) gr(X) (I+Cr(x)) where gr(X) is a multiplicative homomorphism, I is
mr

the identity matrix, and the matrix C (*) is a nilpotent one, C (x) 0. Thus
r r

<Fr(X)fr’r >= r(x)<l + Cr(x)fr,r> gr(X)Pr (x)

where Pr(X) is a polynomial of degree m In the case = R
m

one can indicate con-

ditlons on the coefficients of these polynomials (See [16].).
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