
I nternat. J. ath. & ath. Sci.
Vol. 5 No. 3 (1982) 545-552

545

A THEOREM ON "LOCALIZED" SELF-ADJOINTNESS OF
$CHRDINGER OPERATORS WITH L [oc-POTENTIALS

HANS L. CYCON
New York University

Courant Institute of Mathematical Sciences
251 Mercer Street

New York, New York 10012

(Received December 31, 1981)

ABSTRACT. We prove a result which concludes the self-adjointness of a Schr6"dinger

operator from the self-adjointness of the associated "localized" Schr6"dinger oper-

1
ators having LLoc-Potentials.
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1 INTRODUCTION

In 1978, Simader [i] proved a result which concludes the self-adjointness of a

Schrdinger operator from the self-adjointness of the associated "localized" Schr-

dinger operators. A similar result was given by Brezis [2] in 1979 which seems to

be slightly more general than [i]. Both papers deal with Schrdinger operators

2
having Lloc-pOtentials.

In this paper, we give an analogous result to [2] for Schrdinger operators

1
with Lloc-pOtentials and show the common structure of [i] and [2]. In the proof,

we use arguments due to Kato [3] and Simader [2], which are based on quadratic

form methods.

We first give some notations (compare [4]). If t is a semi-bounded quadratic

form with lower bound , we denote the inner product associated with t by (u,v) t:
t[u,v] + (i )(u,v), for u,v in the form domain Q(t) of t. The associated norm

will be denoted by ll’II t. t is closed if Q(t) together with (’’’)t is a Hilbert
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space. Recall the one-to-one correspondence between semibounded quadratic forms

and semibounded self-adjoint operators. If T is a self-adjoint semibounded opera-

tor, the domain of the closed form associated with T will be denoted by Q(T) and

the form by <u,v>--> (Tu/v) for u,v Q(T). The associated norm will be called

the form norm of T. We will always write Q(T) for the Hilbert space of the associ-

ated form if the inner product is clear. A set which is dense in the Hilbert space

Q(T) will be called a form core of T.

n
Let q be a real-valued function on IR and assume

eI (IRn)q
loc

and

(c I)

with

Lu := Au + qu

L
2

L
I n

D(L) := {u (IRn)/qu
foe

(.i)

where the sum in (i.i) is taken in the distributional sense. Then we define a

"maximal" operator i L2(IRn) associated with L such that

T u := Lu
max

with

L
2 n)D(T := {u D(L)/Lu (IR }.

max

Consider the quadratic form associated with L

n)t[w,v] := Lv w,v C (IR
o

If we assume

(i.2)

(i.3)

t is bounded from below and closable (without loss of generality t->O), (C2)
then there exists a semibounded self-adjoint operator T

F
associated with the closure

L
2 (n) TF coincides with the Friedrichs extension ofof t. Note that for q
loc

(TF)
n

T := T C (IRn); see [3] Q is then the closure of C (IR in the sense
min max o

:= t[w v] + (w,v);of the norm II "If t
associated with the inner product (w,v)t

w,v C (n).
o

From (C2), we know T
F

> O. (1.4)

iNow consider Co(n) with 0 _< < i such that (x) i for Ixl <_ and #(x)=O

for

For k q, let

x
k(X) := ( ). (1.5)
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We now assume, for any k, there exists a "localized" operator associated with L;

L
I

(IRn) and a such thati.e. for k there exist a qk e
loc

(i) LkU := Au + qku (C3)
L
2

L
I (IRn)with D(Lk) := {u (IRn)/qku e
loc

and

(ii) qkku qku for u e D(L).

We define also a "maximal" operator in L2(IRn) associated with Lk; i.e., for k e

TkU :-- LkU
with (1.6)

L
2 n

D(Tk) := {u D(Lk)/u ()}.

Note, that (C3) is not really a restriction; see Corollary i and Corollary 2.

+ +
Denote qk := max {qk,0}, q := max {-qk,0}, q := max {q,0}, q- := max {-q,0}.

2. MAIN RESULTS.

THEOREM. Let k e q. Assume r(CI), _(C2), and _(C3) and define Tmax and T
k

as

in (1.2) and (1.6). If we assume additionally,

and

T
k

is self-adjoint; (C4)

n) (C5Co ( is a form core of T
k

and there exists a c
k

> 0

such that

(-Aw,w) + (qw/w) _< Ck[(TkW/W) + llwll 2
], w C(IRn)o (2.i)

then T is self-adjoint.
max

PROOF. First we note that, by (C5) T
k

is bounded from below by -i. Thus

Q(Tk) is well defined.

Now we proceed in 5 steps.

Step i. We show that for k IN, u e D(Tmax) implies ku Q(Tk), and thus,

H
1 + L

I
(IRn) (making use of theby (C5) ku e (n) n Q(qk and qku e

loc

semiboundedness of Tk)
By HI(IRn) we denote the closure of C(IRn) in the usual Sobolev norm

O
1/2

:= (I IVul 2 + Iul 2) We have the continuous inclusions (compare Kato

[3]), D(Tk) Q(rk) Hl( n) L2(n) H-l(n) Q(T)*.
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By H-I( n) and Q(Tk)* we denote the antidual spaces of Hl(n) and Q(Tk).
L
2 n)T

k
+ 2 maps D(Tk) onto (IR and it is well known (see [4]) that this can be ex-

+2 isa+ 2 from Q(Tk) onto Q(Tk)*. Actually T
ktended to a bicontinuous map T

k

restriction of + 2 to Q(Tk) since, by (2.1) and the semiboundedness of Tk,
L
I

v Q(Tk) implies qkv loc
(IRn)" Now let u D(Tmax). Using (C3) we get in

the distributional sense

LkkU kTmaxu 2 V k V u- (Ak)U. (2.2)

Since VSk u H-I(IRn) and all other terms on the right hand side of (2.2) are in

L2(IRn), we have

LkkU H-I(IRn) Q(rk)*
+ 2 is bijective, we conclude in the same way as Kato [3, Lemma 2] thatSince T

k

ku Q(Tk).
Step 2. We show that, for k IN, u D(Tmax) implies ku Q(TF).

HI n +
Let u D(Tmax) From Step I, we know ku ( n Q(qk). Then, because of

(C3)’ we also have

ku Q(q+)o

From a theorem due to Simon [5, Theorem 2.1] (see also [6] for generalizations), we

know that C(IR n) is dense in HI(IRn) n Q(q+) in the sense of the norm
o

lwl It+ := I IVwl 2 + (q+w/w) + llw112}I/2, w HI(n) n Q(q+).

Therefore, we can find a sequence {v in Co(IRn) such that
n n

lvn SkUl It+-> 0 (n m> oo). (2.3)

Then, because of (1.4), we have

ku Q(q and

(q (v
n kU)/(Vn_ kU) m> 0 (n--> oo). (2.4)

(2.3) and (2.4) imply ku Q(TF).
Step 3. We show that, for k IN, v Q(Tk) implies kv Q(Tk) n Q(TF) and

u Q(TF) implies ku Q(Tk). (2.5)

Let v Q(Tk). Then, because of (C5) there exists a sequence Vn}nlq in C(IRn)
such that

denotes the form of Tk.

---> 0 (n > o), (2.6)
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For := i + sup [Vk[, we have

lVk(Vn-v) ll -< k{llv(vn- v) ll + lvn-vII}
and

qk l*k(Vn v) qk ](Vn v)

(2.7)

(2.8)

because of the semiboundedness of Tk, we have

f+ 2(qkk(Vn-V)/k(Vn-V)) < llV,k(Vn-V) ll 2 + qkl*k(Vn-V) + Ik(Vn v) ll 2
(2.9)

(2.9), together with (2.6), (2.7) and (2.8), yields

and

kv Q(Tk) (2.10)

kVn kvl
tk

--> 0 (n --> oo).

Since, by (C3) we have

llkVn I12=t IIkVnllmtk -IIkVnll 2
(n q).

(II’II
t

denotes the form norm of TF).
We can conclude

and thus

--> 0 (n,m--> oo)l@k(Vn Vm) IIt

@kv Q(TF).
(2.10) and (2.11) prove the first part of Step 3.

(2.11)

Now, let u D(TF) and v e Q(TK). Then kv Q(Tk) n Q(TF) as proved above

and there exist sequences {uj}jIN and {Vm}mlq in C(IRn) such that

luj ull t
--> 0 and lvm v lltk --> 0 (j,m--> ).

Thus,

(TFU,kv) lid (TFUj,kVm) lid (Luj,kVm)
j,m

Using (C3) we have

(Luj ,kVm (LkkUj,vm) 2(uj,VkVVm) (uj ,VmAk).
(2.12) and (2.13) yields, for a suitable constant y ,

(2.12)

(2.13)

j-olim (kUj ,V)tk j-olim (TkkUj/v) (TFU,kV) + 2(u,VkVV) + y(u,v).

Thus the limit of {kUj}j1q exists weakly in the Hilbert space Q(Tk) and since

lkUj kUll --> 0 (j --> ),
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we conclude

ku Q(Tk),
which proves the second part of Step 3.

Step 4. We show T
F

T
max

Let u e D(TF). Then, for k from Step 3, we know ku Q(Tk) and therefore, by

(C5)

As in Step i, we conclude that

Thus u e D(L) and, from

we have

e HI (q).ku (IRn) n Q

LI (IRn).qu
loc

L
2 n

TFU Lu e (IR ),

u e D(Tmax)_ and TFU T u.
max

Step 5. We show TF T
max

In view of Step 4, we have to show

D (Tmax) c_G_ D (TF).
Let v e D(Tmax) and

v’ := (TF + i)-I (Tmax + l)v.

Thus, v’ e D(Tmax) by Step 4 and

(T + l)v (TF + l)v’ (T + l)v’max max

With

u := v- v’ D(Tmax)
we conclude (T + l)u 0 and therefore

max

((Tmax + l)u,w) 0 for w C(IRn).
o

We will show that (2.14) implies u 0; then, Step 5 will be proven.

(2.14)

We argue in the following as Simander does in [i]. Since T is a real op-
max

erator, we may assume u to be real-valued From Step I, we know that ku Q(Tk)
and thus, by (C3) and the semiboundedness of Tk,

H
1

Cku (IRn) n Q(q+) n Q(q-).

we replace w in (2 14) byIf we get, after some partial integrations,
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Since

(VkU,VkW) + (q kU/kw) (q kU/kw) + (kU,kw)

((Vk)2u,w) ((uVw wVu,kVk). (2.15)

H
I n q+ L

1 n)u e
loc

(IR) and lkU (IR

n)(m) i
(IRn) n e (IRwe can, by using an approximation, replace w in (2.15) by u e Hloc

defined by

(m) I u(x) for lu(x) m
u

m sign(u(x)) for lu(x) > m

for m .
Then, the limits of both sides of (2.15) exist and we get

(VkU,VkU) + (q+kU/ku) (q-kU/ku) + (kU,ku)

((Vk)2U,ku) + ((UVk-kVU),kVk). (2.16)

Since, from Step 2, we know ku e Q(TF), we conclude from (2.16) and from TF+I>-I that

lkU 12 _< ((rF + l)kU/kU RHS of (2.16) --> 0 (k --> oo).

Thus u 0, which proves Step 5.

Since TF is self-adjoint by Step 5, the theorem is proven.

+ +
COROLLARY i. Let k IN. Assume (Cl) and (C2). Set qk := q

q-(x) if Ixl -< k

qk (x) :=
0 if Ixl > k

+
qk := qk- qk

and define T
k

and Tmax as in (1.6) and (1.2). Assume additionally

and

T
k

is self-adjoint

there exist 0 a
k

< 1 and b
k

e 0 such that

(qw/w) -< ak(-Aw,w + bkl lwl 12

(C
4

(C5)

w e C(IRn) (2.17)
o

Then T is self-adjoint.
max

PROOF. (C3) holds trivially. From (2.17), we deduce

(-Aw w) + (qw/w) < i {(rkw/w + (b
k
+ i) lwl 12

which implies (2.1). Since C(IRn) is dense in HI(IRn) n Q(q+) in the sense of the
o



552 H.L. CYCON

norm I’l It+ (as we know from [5], see Step 2 above), (2.17) implies that C(IRn)o
is a form core of T

k. Therefore, (C5) holds and, by the theorem, self-adjointness

o f T follows.max

Note that, for q L21oc(IRn)’ Corollary 1 implies the result of Sirder [1]

since then T T where
mln max

T := T Co( n)
min max

COROLLARY 2. Let k IN. Assume (C1) and (C2). Set

qk(x) := { q(X)o
if

if IxllXl -<> kk
and define T

k
and T as in (1.6) and (1.2). Assume additionally (C4) and (C5)max

Then T is self-adjoint. The proof follows immediately from the theorem.max

L
2 (n) Corollary 2 implies the result of Brzis [2] by theIn the case q
loc

+ +same arguments as above. We also should note that, if qk q and qk q (k e )

+)and if q is form-bounded relative to the form of (-A + q with bound < i, our

theorem is Kato’s [3] result for the semibounded case. In fact, our proof is a

variant of Kato’s proof of his main theorem in [3].

Note: On leave from: Technische Universtitt Berlin, Fachbereich Mathematik
StraBe des 17 Juni 135, 1 Berlin 12, Germany
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