UNIVALENCE OF NORMALIZED SOLUTIONS OF W''(z) + p(z)W(z) = 0

R.K. BROWN

Department of Mathematical Sciences Kent State University Kent, Ohio 44242 U.S.A.

(Received August 27, 1981)

<u>ABSTRACT</u>. Denote solutions of W"(z) + p(z)W(z) = 0 by W_{\alpha}(z) = $z^{\alpha}[1 + \sum_{n=1}^{\infty} a_n z^n]$ and $W_{\beta}(z) = z^{\beta}[1 + \sum_{n=1}^{\infty} b_n z^n]$, where $0 < \Re\{\beta\} \le 1/2 \le \Re\{\alpha\}$ and $z^2p(z)$ is holomorphic in |z| < 1. We determine sufficient conditions on p(z) so that $[W_{\alpha}(z)]^{1/\alpha}$ and $[W_{\beta}(z)]^{1/\beta}$ are univalent in |z| < 1. <u>KEY WORDS AND PHRASES</u>. Univalent, spirallike, starlike. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary - 34A20; Secondary - 30C45.

1. INTRODUCTION.

Consider the differential equation

$$W''(z) + p(z)W(z) = 0$$
, where (1.1)

$$z^{2}p(z) = p_{0} + p_{1}z + \dots + p_{n}z^{n} + \dots, p_{0} \neq 0,$$
 (1.2)

is holomorphic for |z| < 1.

The indicial equation associated with the regular singular point of the equation (1.1) at the origin is

$$\lambda^2 - \lambda + p_0 = 0 \tag{1.3}$$

and has roots which we designate by α and β , where $\alpha + \beta = 1$ and $\Re\{\alpha\} \ge 1/2 \ge \Re\{\beta\}$. We will also use the notation

$$\alpha = \alpha_1 + i\alpha_2, \ \beta = \beta_1 + i\beta_2. \tag{1.4}$$

Corresponding to the root α there is always a unique solution of (1.1) of the form

$$W_{\alpha}(z) = z^{\alpha} [1 + \sum_{n=1}^{\infty} a_{n} z^{n}]$$
(1.5)

valid for |z| < 1.

We restrict our attention in this paper to those β for which $\beta_1 = \Re{\{\beta\}} > 0$. We then obtain a unique solution of (1.1) of the form

$$W_{\beta}(z) = z^{\beta} [1 + \sum_{n=1}^{\infty} b_n z^n]$$
 (1.6)

valid for |z| < 1.

and

We define two normalizations $F_{\alpha}(z)$ and $F_{\beta}(z)$ of the solutions of (1.5) and (1.6) as follows:

$$F_{\alpha}(z) = [W_{\alpha}(z)]^{1/\alpha} = z + \cdots,$$

$$F_{\beta}(z) = [W_{\beta}(z)]^{1/\beta} = z + \cdots \qquad (1.7)$$

where we choose that branch of each function for which the derivative at the origin is 1.

Next we consider the "comparison" equation

$$W''(z) + p_C^*(z)W_C(z) = 0$$
, with (1.8)

$$z^{2}p_{C}^{*}(z) \equiv C(z^{2}p^{*}(z) - p_{0}^{*}) + p_{0}^{*}, C > 0, \qquad (1.9)$$

where $z^{2}p^{*}(z) = p_{0}^{*} + p_{1}^{*}z + \cdots + p_{n}^{*}z^{n} + \cdots$

is non-constant and holomorphic for |z| < 1 with p_1^* , $i = 0, 1, 2, \cdots$ real and $p_0^* \leq 1/4$. With these restrictions on $z^2 p^*(z)$ the solutions of (1.8) are real on the real axis (see [1]). We will designate the exponents associated with the regular singular point of (1.8) at the origin by α^* and β^* , where $\alpha^* + \beta^* = 1$ and $\alpha^* \geq 1/2 \geq \beta^*$. As in the case of equation (1.1) we obtain for any α^* a unique solution of (1.8) of the form

$$W_{*,C}(z) = z^{\alpha^{*}} [1 + \sum_{n=1}^{\infty} a_{n}^{*}(C) z^{n}]$$
(1.10)

valid for $\left| z \right| < 1$, and for any $\beta^* > 0$ a unique solution of the form

$$W_{\beta^{*},C} = z^{\beta^{*}} [1 + \sum_{n=1}^{\infty} b_{n}^{*}(C) z^{n}]$$
(1.11)

valid for |z| < 1.

In [1] Robertson determined fairly general sufficient conditions on p(z) relative to $p^*(z)$ under which $F_{\alpha}(z)$ is univalent in |z| < 1. In [2] Brown extended these results to $F_{\beta}(z)$ but only for real β satisfying $0 < \beta \leq 1/2$. In the Main Theorem of this paper we present sharp sufficient conditions on p(z) relative to $p_{C}^{*}(z)$ under which the function $F_{\beta}(z)$ is univalent and spirallike in |z| < 1, where β may be complex valued. We then compare these results to those of Robertson for $F_{\alpha}(z)$.

2. PRELIMINARIES.

S will denote the class of functions f(z) holomorphic and univalent in the unit disk $D \equiv \{z; |z| < 1\}$ and normalized so that f(0) = 0, f'(0) = 1.

We shall say that $f(z) \in F_{\varphi,\alpha}$ if and only if for some real number φ , $|\varphi| < \pi/2$, and some α , $0 \le \alpha < 1$,

$$\Re\{\frac{e^{i\varphi}zf'(z)}{f(z)}\} > \alpha$$

for all $z \in D$. $F_{\varphi} \equiv F_{\varphi,0}$ is the class of functions called spirallike in D, [3], [4]. Functions in the subclass $S^{*}(\alpha) \equiv F_{0,\alpha}$ are called starlike of order α in D. $S^{*}(0)$ is the class of functions starlike in D. It follows that $S^{*}(\alpha) \subset F_{\varphi} \subset S$; (see [2]).

We will need the following result.

THEOREM 2.1. Let $z^2 p_C^*(z)$, W (z), and W (z) be defined by (1.9), (1.10), α , C β , C and (1.11) respectively. If for all |z| < 1

$$\Re\{z^2p^*(z)\} \le |z|^2p^*(|z|)$$

then for fixed C $\frac{|z|W'_{*}(|z|)}{W_{*}(|z|)}$ is monotonic decreasing for all $|z| < \min(1, \mathbb{R}_{\alpha}(C)), \alpha^{*}, C$

and $\frac{|z|W_{*}(|z|)}{\substack{\beta, C\\W_{*}(|z|)\\\beta, C}}$ is monotonic decreasing for all $|z| < \min(1, R_{*}(C))$ where $\beta^{*}(C)$ and $R_{*}(C)$ are the smallest positive zeros of the functions $W_{*}(r)$ and α^{*}, C $W_{*}(r)$ respectively. β, C

In the case of α^* this result is given on page 262 of [1]. For β^* the result follows from (3.16) and Theorem 3.18 of [2] after noting that if $z^2 p^*(z)$ is non-constant the equality $\Re\{z^2 p^*(z)\} = |z|^2 p^*(|z|)$ cannot hold for all $0 \le r \le r_1$ on any ray θ = constant $\ne 0$.

The condition that $z^2 p^*(z)$ be nonconstant is necessary to ensure strict monotonicity in the results above since if $z^2 p^*(z)$ is constant so are

$$\frac{|\mathbf{z}| \mathbb{W}'_{*}(|\mathbf{z}|)}{\overset{\alpha}{\underset{\alpha}, C}} \text{ and } \frac{|\mathbf{z}| \mathbb{W}'_{*}(|\mathbf{z}|)}{\overset{\beta}{\underset{\alpha}, C}}.$$

3. LEMMAS.

In this section we prove the lemmas used to obtain Theorem A and The Main Theorem in section 4.

Since all of the results of this section are stated for $W_{\beta}(z)$ and $W_{*}(z)$ we adopt the following notational convention:

$$W \equiv W(z) \equiv W_{\beta}(z) = z^{\beta}[1 + \sum_{n=1}^{\infty} b_{n}z^{n}],$$

$$W_{C} \equiv W_{C}(z) \equiv W_{\beta}, (z) = z^{\beta}[1 + \sum_{n=1}^{\infty} b_{n}^{*}(C)z^{n}].$$
(3.1)

It is important to note that all of the results of this section remain valid if W and W_C are replaced by either $W_{\alpha}(z)$ and $W_{*}(z)$ or by $W_{\alpha}(z)$ and $W_{*}(z)$ and, $\alpha_{*,C}$ $\beta_{*,C}$ moreover, the proofs are obtained by making corresponding changes in the proofs given here.

In our lemmas we will investigate the rate of change of $\Re\{\frac{zW'}{W}\}$ and $\Im\{\frac{zW'}{W}\}$ on rays issuing from the origin. For this reason we designate z by re^{iθ}, fix θ, vary r, and use (1.1) to obtain

$$\mathbf{r} \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \left[\frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}}\right] = -\mathbf{z}^2 \mathbf{p}(\mathbf{z}) + \frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}} - \left[\frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}}\right]^2, \qquad (3.2)$$

where W' designates differentiation with respect to z.

Taking real and imaginary parts of (3.2) we obtain

$$\mathbf{r} \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \mathbf{R}\{\frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}}\} = -\mathbf{R}\{\mathbf{z}^2\mathbf{p}(\mathbf{z})\} + \mathbf{R}\{\frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}}\} - \mathbf{R}^2\{\frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}}\} + \mathbf{\mathcal{I}}^2\{\frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}}\}$$
(3.3)

and

$$\mathbf{r} \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \mathfrak{I}\{\frac{zW'}{W}\} = -\mathfrak{I}\{z^2 \mathfrak{p}(z)\} + \mathfrak{I}\{\frac{zW'}{W}\} - 2\mathfrak{R}\{\frac{zW'}{W}\} \mathfrak{I}\{\frac{zW'}{W}\}.$$
(3.4)

Also from (1.8) and the fact that W_{C} is real for real z, we obtain for $z \ge 0$

$$\mathbf{r} \frac{d}{d\mathbf{r}} \left(\frac{\mathbf{r} \mathbf{W}_{C}^{\prime}(\mathbf{r})}{\mathbf{W}_{C}(\mathbf{r})} \right) = -\mathbf{r}^{2} \mathbf{p}_{C}^{*}(\mathbf{r}) + \frac{\mathbf{r} \mathbf{W}_{C}^{\prime}(\mathbf{r})}{\mathbf{W}_{C}(\mathbf{r})} - \left(\frac{\mathbf{r} \mathbf{W}_{C}^{\prime}(\mathbf{r})}{\mathbf{W}_{C}(\mathbf{r})} \right)^{2}.$$
(3.5)

Our goal is to determine conditions on $z^2p(z)$ relative to $z^2p_C^*(z)$ which will ensure that on every ray θ = constant

$$\Re\{\frac{zW'}{W}\} - \frac{rW'(r)}{W_C(r)} \ge 0 \text{ for all } 0 \le r < 1.$$
(3.6)

Then it will follow from (1.7) that for $\theta = \text{constant}$

$$\Re\{\frac{\beta z F_{\beta}'(z)}{F_{\beta}(z)}\} - \frac{r W_{C}'(r)}{W_{C}(r)} \ge 0 \text{ for all } 0 \le r < 1.$$
(3.7)

Since R{ β } > 0 (3.7) implies $F_{\beta}(z)$ is univalent and spirallike in |z| < R(C), where R(C) is the smallest positive zero of $W_C'(r)$ or 1 whichever is the smaller. We will show that C can be adjusted so that R(C) = 1 and, therefore, $F_{\beta}(z)$ is univalent in D.

In [1] the inequality (3.6) was obtained when $W = W_{\alpha}(z)$ and $W_{C}(r) = W_{\alpha}(r)$ by a method that relied upon the inequality

$$\mathbf{r} \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \Re\{\frac{\mathbf{z}W'}{W}\} \geq - \Re\{\mathbf{z}^2 p(\mathbf{z})\} + \Re\{\frac{\mathbf{z}W'}{W}\} - \Re^2\{\frac{\mathbf{z}W'}{W}\}$$

obtained from (3.3) by neglecting the term $\mathfrak{g}^{2}\{\frac{zW'}{W}\}$. Unfortunately this inequality is not sharp enough to yield (3.6) when $W = W_{\beta}(z)$ and $W_{C}(r) = W_{\beta}(r)$ by the method of [1]. In this paper we retain the term $\mathfrak{g}^{2}\{\frac{zW'}{W}\}$ in (3.3) and derive estimates for its rate of growth relative to that of $\frac{rW_C^{\prime}}{W_C}$. These estimates enable us to establish (3.6) for $W = W_{\beta}(z)$ and $W_C^{\prime}(r) = W_{\beta}(r)$.

We introduce the following notation where $z = re^{i\theta}$, θ is constant, and r satisfies the inequalities $0 \le r < 1$.

$$T(\mathbf{r}) \equiv \Re\{\frac{\mathbf{z}W'}{W}\} - \mathbf{r} \frac{W'_{C}(\mathbf{r})}{W_{C}(\mathbf{r})}.$$
(3.8)

$$S(\mathbf{r}) \equiv -\Re\{\frac{\mathbf{z}W'}{W}\} - \mathbf{r} \frac{W'_{C}(\mathbf{r})}{W_{C}(\mathbf{r})}.$$
(3.9)

$$M(\mathbf{r}) \equiv -\Im\{\frac{zW'}{W}\} - \mathbf{r} \frac{W'_{C}(\mathbf{r})}{W_{C}(\mathbf{r})}.$$
 (3.10)

$$N(\mathbf{r}) \equiv \Im\{\frac{zW'}{W}\} - \mathbf{r} \frac{W'_{C}(\mathbf{r})}{W_{C}(\mathbf{r})}.$$
 (3.11)

$$\tau(\mathbf{r}) \equiv -\Re\{z^2 p(z)\} + r^2 p_C^*(\mathbf{r}). \qquad (3.12)$$

$$\sigma(\mathbf{r}) \equiv \Re\{z^2 p(z)\} + r^2 p_C^*(\mathbf{r}). \qquad (3.13)$$

$$\mu(\mathbf{r}) \equiv \Im\{z^{2}p(z)\} + r^{2}p_{C}^{*}(\mathbf{r}).$$
 (3.14)

$$v(\mathbf{r}) \equiv -\Im \{z^2 p(z)\} + r^2 p_c^*(\mathbf{r}).$$
 (3.15)

R(C) is the smallest positive zero of $W_C^1(r)$ (3.16)

$$R^* = \min(1, R(C)).$$
 (3.17)

In terms of this notation our goal is to establish conditions under which $T(\mathbf{r}) > T(0)$ on every ray θ = constant, $|\mathbf{z}| < R^*$.

From (3.3), (3.4), and (3.5) we obtain the following relations:

$$\mathbf{r} \frac{dT(\mathbf{r})}{d\mathbf{r}} = \tau(\mathbf{r}) + T(\mathbf{r})(1 - \frac{2\mathbf{r} W_{C}^{\prime}(\mathbf{r})}{W_{C}(\mathbf{r})}) - T^{2}(\mathbf{r}) + g^{2}\{\frac{zW'}{W}\}.$$
(3.18)

$$\mathbf{r} \frac{dS(\mathbf{r})}{d\mathbf{r}} = \sigma(\mathbf{r}) + S(\mathbf{r})(1 + \frac{2\mathbf{r}W_{C}^{\prime}(\mathbf{r})}{W_{C}(\mathbf{r})}) + S^{2}(\mathbf{r}) - g^{2}\{\frac{\mathbf{z}W^{\prime}}{W}\} + 2(\frac{\mathbf{r}W_{C}^{\prime}(\mathbf{r})}{W_{C}(\mathbf{r})})^{2}.$$
 (3.19)

$$\mathbf{r} \frac{d\mathbf{M}(\mathbf{r})}{d\mathbf{r}} = \mu(\mathbf{r}) + M(\mathbf{r}) + 2 R\{\frac{zW'}{W}\} \Im\{\frac{zW'}{W}\} + (\frac{\mathbf{r}W_{C}'(\mathbf{r})}{W_{C}'(\mathbf{r})})^{2}$$
(3.20)

$$\mathbf{r} \frac{d\mathbf{N}(\mathbf{r})}{d\mathbf{r}} = \mathbf{v}(\mathbf{r}) + \mathbf{N}(\mathbf{r}) - 2 \operatorname{R}\left\{\frac{z\mathbf{W}'}{\mathbf{W}}\right\} \operatorname{s}\left\{\frac{z\mathbf{W}'}{\mathbf{W}}\right\} + \left(\frac{\mathbf{r}\mathbf{W}_{C}'(\mathbf{r})}{\mathbf{W}_{C}(\mathbf{r})}\right)^{2}.$$
 (3.21)

The proofs of most of the lemmas in this section reflect a common simple theme that is set forth formally in the following lemma.

LEMMA A. Let $G(\mathbf{r})$ be a real-valued differentiable function on $a \leq \mathbf{r} \leq b$. Let $G(\mathbf{r}) > 0$ for all $a \leq \mathbf{r} < \rho \leq b$ and $G(\rho) = 0$. Then it follows that $G'(\rho) \leq 0$.

It should be noted that from their definitions it follows that the functions $T(\mathbf{r})$, $S(\mathbf{r})$, $M(\mathbf{r})$ and $N(\mathbf{r})$ can assume a value at most a finite number of times on any segment $\theta = \text{constant}$, $0 \le \mathbf{r} \le \mathbf{r}_2 < 1$. Thus if, for example, $T(\mathbf{r}) = \mathbf{k}$ for some \mathbf{r} in $0 \le \mathbf{r} \le \mathbf{r}_2 < 1$, then there is a smallest $\mathbf{r} \equiv \rho$ in this interval for which $T(\rho) = \mathbf{k}$.

LEMMA 1. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. If for fixed θ we have

a)
$$\tau(\mathbf{r}) \ge \tau(0)$$
 for all $0 < \mathbf{r} < 1$,
b) $T(\mathbf{r}) > T(0)$ for all $0 \le \mathbf{r} \le \mathbf{r}_1 < \mathbb{R}^*$,
c) $\frac{\mathbf{r}_1 W_C'(\mathbf{r}_1)}{W_C(\mathbf{r}_1)} = \beta^* - |\beta_2|$,
d) $|\beta_2| \le 2(\beta_1 - \beta^*)$,

then T(r) > T(0) for all $0 < r < R^*$.

PROOF. Assume that the conclusion is false. Then there exists an r, $r_1 < r < R^*$, for which T(r) - T(0) = 0. Let ρ be the smallest such r. Then since T(r) - T(0) > 0 for all $0 < r < \rho$ it follows from Lemma A, with G(r) = T(r) - T(0), that $\frac{dT(r)}{dr} \Big|_{r=\rho} \le 0$. We will show, however, that our hypotheses imply that $\frac{dT(r)}{dr} \Big|_{r=\rho} \gtrsim 0$. Thus there can be no roots of T(r) - T(0) on $r_1 < r < R^*$, and consequently T(r) > T(0) for all $0 < r < R^*$.

From (3.18) and a) and b) of our hypotheses we have

$$\mathbf{r} \frac{d\mathbf{T}(\mathbf{r})}{d\mathbf{r}} \Big|_{\mathbf{r}=\rho} > \tau(0) + \mathbf{T}(0)(1 - \frac{2\rho W_{C}^{\dagger}(\rho)}{W_{C}(\rho)}) - \mathbf{T}^{2}(0).$$
 (3.22)

From Theorem 2.1 it follows that $f(r) \equiv 1 - \frac{2rW_C^*(r)}{W_C^*(r)}$ is monotonic increasing on $r_1 < r < R^*$. Thus

$$r \frac{dT(r)}{dr} \Big|_{r=\rho} > \tau(0) + T(0)f(r_1) - T^2(0)$$

= $\tau(0) + T(0)(1 - 2\beta^*) + 2|\beta_2|(\beta_1 - \beta^*) - T^2(0),$

which by d) of our hypotheses is

$$\geq \tau(0) + T(0)(1 - 2\beta^{*}) + \beta_{2}^{2} - T^{2}(0)$$
$$= r \frac{dT(r)}{dr} \Big|_{r=0} = 0.$$

Thus $\frac{dT(\mathbf{r})}{d\mathbf{r}}\Big|_{\mathbf{r}=\rho} > 0$. This is the desired contradiction from which it follows that $T(\mathbf{r}) > T(0)$ for all $0 < \mathbf{r} < \mathbb{R}^*$.

LEMMA 2. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $\beta_1 - \beta^* > 0$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for fixed θ we have $S(r_1) > S(0)$, and for all $0 < r_1 \le r \le r_2 < R^*$

a) $\sigma(\mathbf{r}) \ge \sigma(0)$, b) $\mathfrak{I}^{2}\left\{\frac{\mathbf{z}W'}{W}\right\} \le \beta_{2}^{2}$

then S(r) > S(0) for all $r_1 \le r \le r_2$.

PROOF. From (3.19) and a) and b) of our hypotheses we have

$$\mathbf{r} \frac{d\mathbf{S}(\mathbf{r})}{d\mathbf{r}} \Big|_{\mathbf{r}=\rho} \ge \sigma(0) + S(0) + S^{2}(0) + \frac{2\rho W_{C}^{1}(\rho)}{W_{C}(\rho)} S(0) + 2(\frac{\rho W_{C}^{1}(\rho)}{W_{C}(\rho)})^{2} - \beta_{2}^{2}.$$
 (3.23)

Now use the method of proof of Lemma 1 with $G(r) \equiv S(r) - S(0)$, ρ the smallest zero of G(r) on $r_1 \leq r \leq r_2$, and

$$\mathbf{f}(\mathbf{r}) \equiv \frac{2\mathbf{r} \mathbf{W}_{\mathbf{C}}^{\prime}(\mathbf{r})}{\mathbf{W}_{\mathbf{C}}(\mathbf{r})} \, \mathbf{S}(\mathbf{0}) + 2 \left(\frac{\mathbf{r} \mathbf{W}_{\mathbf{C}}^{\prime}(\mathbf{r})}{\mathbf{W}_{\mathbf{C}}(\mathbf{r})}\right)^{2}.$$

From Theorem 2.1 it follows that if $\beta_1 - \beta^* > 0$ then $f(\mathbf{r})$ is monotonic increasing on $0 < \mathbf{r} \le \mathbf{r}_2$. Thus from (3.22) we have

$$\mathbf{r} \frac{dS(\mathbf{r})}{d\mathbf{r}} \Big|_{\mathbf{r}=\rho} > \sigma(0) + S(0) + S^{2}(0) + \mathbf{f}(0) - \beta_{2}^{2} = \mathbf{r} \frac{dS(\mathbf{r})}{d\mathbf{r}} \Big|_{\mathbf{r}=0} = 0,$$

and the lemma follows as in the proof of Lemma 1.

LEMMA 3A. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $0 < \beta_2 \le \beta_1 - \beta^*$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ $S(r_1) > S(0)$, $N(r_1) > N(0)$, and if for all $0 < r_1 \le r \le r_2 < R^*$ we have

- a) $\sigma(\mathbf{r}) \ge \sigma$ (0), b) $\nu(\mathbf{r}) \ge \nu(0)$,
- c) $0 \leq \mathfrak{J}\{\frac{zW'}{W}\} \leq \beta_2$,

then it follows that N(r) > N(0) for all $r_1 \le r \le r_2$.

PROOF. From Lemma 2 it follows that S(r) > S(0) for all $r_1 \le r \le r_2$, and from (3.9) we have

$$\Re\{\frac{zW'}{W}\} < -S(0) - \frac{rW'_C(r)}{W_C(r)} = \beta_1 + \beta^* - \frac{rW'_C(r)}{W_C(r)} \text{ for all } r_1 \le r \le r_2.$$

Using this inequality along with (3.21) and c) of our hypotheses we have

$$\mathbf{r} \frac{d\mathbf{N}(\mathbf{r})}{d\mathbf{r}} > v(\mathbf{r}) + \mathbf{N}(\mathbf{r}) - 2(\beta_{1} + \beta_{2} - \frac{\mathbf{r}W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})})(\mathbf{N}(\mathbf{r}) + \frac{\mathbf{r}W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})}) + (\frac{\mathbf{r}W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})})^{2} \quad (3.24)$$

where we have used the definition (3.11) in the third term.

From (3.24) we obtain

$$\mathbf{r} \frac{d\mathbf{N}(\mathbf{r})}{d\mathbf{r}} > \nu(\mathbf{r}) + \mathbf{N}(\mathbf{r}) [1-2(\beta_{1} + \beta^{*})] + 2\mathbf{N}(\mathbf{r}) \frac{\mathbf{r}\mathbf{W}_{C}^{\prime}(\mathbf{r})}{\mathbf{W}_{C}(\mathbf{r})} - 2(\beta_{1} + \beta^{*}) \frac{\mathbf{r}\mathbf{W}_{C}^{\prime}(\mathbf{r})}{\mathbf{W}_{C}(\mathbf{r})} + 3(\frac{\mathbf{r}\mathbf{W}_{C}^{\prime}(\mathbf{r})}{\mathbf{W}_{C}(\mathbf{r})})^{2} . (3.25)$$

Now use the method of proof of Lemma 1 with $G(r) \equiv N(r) - N(0)$, ρ the smallest zero of G(r) in $r_1 \leq r \leq r_2$, and

$$\mathbf{f}(\mathbf{r}) \equiv 2[N(0) - (\beta_{1} + \beta^{*})] \frac{\mathbf{r} W_{C}^{*}(\mathbf{r})}{W_{C}(\mathbf{r})} + 3(\frac{\mathbf{r} W_{C}^{*}(\mathbf{r})}{W_{C}(\mathbf{r})})^{2}.$$

Then from (3.25), Theorem 2.1, and a) and b) of our hypotheses we have

$$r \frac{dN(r)}{dr} \Big|_{r=\rho} > v(0) + N(0)[1 - 2(\beta_1 + \beta^*)] + f(\rho).$$
 (3.26)

From Theorem 2.1 it follows that if $\beta_2 \leq \beta_1 - \beta^*$ then f(r) is monotonic increasing on $0 \leq r \leq r_2$. Thus from (3.26) we have

$$\frac{dN(\mathbf{r})}{d\mathbf{r}} \Big|_{\mathbf{r}=\rho} > v(0) + N(0) [1 - 2(\beta_1 + \beta^*)] + \mathbf{f}(0)$$
$$= v(0) + N(0) - 2\beta_1 \beta_2 + \beta^{*2}$$
$$= r \frac{dN(\mathbf{r})}{d\mathbf{r}} \Big|_{\mathbf{r}=0} = 0.$$

The lemma now follows as in the proof of Lemma 1.

COROLLARY 3A. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $0 < \beta_2 \le \beta_1 - \beta^*$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ $J(\frac{r_1 e^{i\theta} W'(r_1 e^{i\theta})}{W(r_1 e^{i\theta})}) > 0$, $S(r_1) > S(0)$, $N(r_1) > N(0)$, and if for all $0 < r_1 \le r \le r_2 < R^*$ we have a) $\sigma(r) \ge \sigma(0)$, b) $\nu(r) \ge \nu(0)$, c) $J(\frac{zW'}{W}) \le \beta_2$, d) $\frac{rW'_C(r)}{W(r)} \ge \max(\beta^* - \beta_2, 0)$,

then it follows that $\Im\{\frac{zW'}{W}\} > 0$ and N(r) > N(0) for all $r_1 \le r \le r_2$.

PROOF. To prove that $\mathfrak{g}\{\frac{zW'}{W}\} > 0$ for all $r_1 \leq r \leq r_2$ note that if \mathfrak{g} is the smallest zero of $\mathfrak{g}\{\frac{zW'}{W}\}$ in the interval $r_1 < r < r_2$, then we can apply Lemma 3A on the interval $r_1 \leq r \leq \mathfrak{g}$ to obtain N(r) > N(0) for all $r_1 \leq r \leq \mathfrak{g}$. Then from (3.11) it follows that

$$\mathfrak{g}\left\{\frac{zW'}{W}\right\} > \beta_2 - \beta^* + \frac{rW_C'(r)}{W_C(r)}$$
(3.27)

. .

for all $r_1 \leq r \leq \rho$. (3.27) and d) of our hypotheses give

$$\beta_2 - \beta^* + \frac{\mathbf{r} \mathbf{W}_C'(\mathbf{r})}{\mathbf{W}_C(\mathbf{r})} \ge 0 \text{ on } \mathbf{r}_1 \le \mathbf{r} \le \rho.$$
 (3.28)

Then (3.27) and (3.28) imply that

$$\vartheta\{\frac{\rho e^{i\theta} W'(\rho e^{i\theta})}{W(\rho e^{i\theta})}\} > 0$$

which contradicts the assumption on ρ . Thus $\Im\{\frac{zW'}{W}\} \ge 0$ for all $r_1 \le r \le r_2$. Now from Lemma 3A it follows directly that N(r) > N(0) for all $r_1 \le r \le r_2$.

LEMMA 3B. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $\beta_2 < 0$, $|\beta_2| \leq \beta_1 - \beta^*$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ we have $M(r_1) > M(0)$, $S(r_1) > S(0)$, and if for all $0 < r_1 \leq r \leq r_2 < R^*$ we have

- a) $\sigma(\mathbf{r}) \ge \sigma(0)$, b) $\mu(\mathbf{r}) \ge \mu(0)$,
- c) $\beta_2 \leq \Im\{\frac{zW'}{W}\} \leq 0$,

then it follows that M(r) > M(0) for all $r_1 \le r \le r_2$.

PROOF. The method of proof is the same as that of Lemma 3A. Start with (3.20) instead of (3.21) and replace the condition $0 < \beta_2 \le \beta_1 - \beta^*$ by $|\beta_2| \le \beta_1 - \beta^*$. The lemma then follows by establishing the contradiction $\frac{dM}{dr}|_{r=0} > 0$.

COROLLARY 3B. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $\beta_2 < 0$, $|\beta_2| \leq \beta_1 - \beta^*$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ , $g\{\frac{r_1 e^{i\theta}W'(r_1 e^{i\theta})}{W(r_1 e^{i\theta})}\} < 0$, $S(r_1) > S(0)$, $M(r_1) > M(0)$, and if for all $0 < r_1 \leq r \leq r_2 < R^*$ we have a) $\sigma(r) \geq \sigma(0)$, b) $\mu(r) \geq \mu(0)$, c) $g\{\frac{zW'}{W}\} \geq \beta_2$. d) $\frac{rW'_C(r)}{W_O(r)} \geq \max(\beta^* - |\beta_2|, 0)$,

then it follows that M(r) > M(0) for all $r_1 \le r \le r_2$.

PROOF. The method of proof is the same as that of Corollary 3A using $M(\mathbf{r})$ in place of $N(\mathbf{r})$ throughout.

LEMMA 4A. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $0 < \beta_2 \leq \frac{\beta_1 - \beta^*}{2}$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ $M(r_1) > M(0)$, and if for all $0 < r_1 \leq r \leq r_2 < R^*$ we have a) $\mu(r) > \mu(0)$,

b)
$$T(\mathbf{r}) \ge T(\mathbf{0})$$
,
c) $\mathfrak{s}\left(\frac{\mathbf{z}\mathbf{W}'}{\mathbf{W}}\right) \ge \beta_2$,
d) $\frac{\mathbf{r}\mathbf{W}_{\mathbf{C}}'(\mathbf{r})}{\mathbf{W}_{\mathbf{C}}'(\mathbf{r})} \ge \max(\beta^* - \beta_2, 0)$,

then it follows that M(r) > M(0) for all $r_1 \le r \le r_2$.

PROOF. From (3.20), (3.8), and a) and b) of our hypotheses it follows that

$$\mathbf{r} \frac{\mathrm{d}\mathbf{M}(\mathbf{r})}{\mathrm{d}\mathbf{r}} \ge \mu(\mathbf{0}) + \mathbf{M}(\mathbf{r}) + 2(\mathbf{T}(\mathbf{0}) + \frac{\mathbf{r}\mathbf{W}_{\mathrm{C}}^{\prime}(\mathbf{r})}{\mathbf{W}_{\mathrm{C}}(\mathbf{r})})\vartheta\{\frac{\mathbf{z}\mathbf{W}^{\prime}}{\mathbf{W}}\} + (\frac{\mathbf{r}\mathbf{W}_{\mathrm{C}}^{\prime}(\mathbf{r})}{\mathbf{W}_{\mathrm{C}}(\mathbf{r})})^{2}$$

with equality for r = 0. Using definition (3.10) we rewrite this inequality in the form

$$\mathbf{r} \frac{d\mathbf{M}(\mathbf{r})}{d\mathbf{r}} \ge \mu(0) + \mathbf{M}(\mathbf{r})(1 - 2\mathbf{T}(0)) - 2(\mathbf{M}(\mathbf{r}) + \mathbf{T}(0)) \frac{\mathbf{r} \mathbf{W}_{\mathbf{C}}^{\dagger}(\mathbf{r})}{\mathbf{W}_{\mathbf{C}}(\mathbf{r})} - \left(\frac{\mathbf{r} \mathbf{W}_{\mathbf{C}}^{\dagger}(\mathbf{r})}{\mathbf{W}_{\mathbf{C}}(\mathbf{r})}\right)^{2} (3.29)$$

Now use the method of proof of Lemma 1 with $G(\mathbf{r}) = M(\mathbf{r}) - M(0)$, ρ the smallest zero of $G(\mathbf{r})$ on $\mathbf{r}_1 \leq \mathbf{r} \leq \mathbf{r}_2$, and

$$f(r) = -2(M(0) + T(0)) \frac{rW'(r)}{W_{C}(r)} - (\frac{rW'(r)}{W_{C}(r)})^{2}$$

From Theorem 2.1 it follows that if $\beta_2 \leq (\beta_1 - \beta^*)/2$ then $f(\mathbf{r})$ is monotonic increasing on $0 < \mathbf{r} \leq r_2$. Then from (3.29) we have

$$\mathbf{r} \frac{\mathrm{d}\mathbf{M}(\mathbf{r})}{\mathrm{d}\mathbf{r}} \Big|_{\mathbf{r}=\rho} \ge \mu(0) + \mathbf{M}(0)(1 - 2\mathrm{T}(0)) - 2(\mathbf{M}(0) + \mathrm{T}(0))(\frac{\rho \mathbf{W}_{C}^{\prime}(\rho)}{\mathbf{W}_{C}(\rho)}) - (\frac{\rho \mathbf{W}_{C}^{\prime}(\rho)}{\mathbf{W}_{C}(\rho)})^{2}$$

$$> \mu(0) + \mathbf{M}(0)(1 - 2\mathrm{T}(0)) - 2(\mathbf{M}(0) + \mathrm{T}(0))\beta^{*} - \beta^{*2}$$

$$= \mathbf{r} \frac{\mathrm{d}\mathbf{M}(\mathbf{r})}{\mathrm{d}\mathbf{r}} \Big|_{\mathbf{r}=0} = 0,$$

and the lemma now follows as in the proof of Lemma 1.

LEMMA 4B. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $\beta_2 < 0$, $|\beta_2| \leq \frac{\beta_1 - \beta^*}{2}$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ $N(r_1) > N(0)$, and if for all $0 < r_1 \le r \le r_2 < R^*$ we have a) v(r) > v(0), b) T(r) > T(0), c) $\Im\{\frac{zW'}{W}\} \leq \beta_2$ d) $\frac{rW_{C}(r)}{W_{C}(r)} \ge \max(\beta^{*} - |\beta_{2}|, 0),$ then it follows that N(r) > N(0) for all $r_1 \le r \le r_2$. PROOF. The proof proceeds precisely as that of Lemma 4A except that (3.11) is used in place of (3.10), and the condition $|\beta_2| \leq \frac{\beta_1 - \beta^*}{2}$ replaces $\beta_2 \leq \frac{\beta_1 - \beta^*}{2}$. LEMMA 5A. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $0 < \beta_2 \leq \frac{\beta_1 - \beta^*}{2}$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ $S(r_1) > S(0)$, $M(r_1) > M(0)$, and if for all $0 < r_1 \le r \le r_2 < R^*$ we have a) $\mu(r) > \mu(0)$, b) $\sigma(\mathbf{r}) > \sigma(\mathbf{0})$, c) $T(r) \ge T(0)$, d) $\Im\{\frac{zW'}{W}\} \geq \beta_2$, e) $\frac{rW_{C}}{W_{C}} \ge \max (\beta^{*} - \beta_{2}, 0),$ then it follows that S(r) > S(0) for all $r_1 \le r \le r_2$.

PROOF. By Lemma 4A we have

$$\Im\{\frac{zW'}{W}\} \leq -M(0) - \frac{rW'_{C}(r)}{W_{C}(r)} = \beta_{2} + \beta^{*} - \frac{rW'_{C}(r)}{W_{C}(r)} > 0$$
(3.30)

for all $r_1 \leq r \leq r_2$. Thus from (3.19) and (3.30) it follows that

$$\mathbf{r} \frac{dS(\mathbf{r})}{d\mathbf{r}} \ge \sigma(\mathbf{r}) + S(\mathbf{r})(1 + \frac{2\mathbf{r}W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})}) + S^{2}(\mathbf{r}) - (-M(0) - \frac{\mathbf{r}W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})}^{2} + 2(\frac{\mathbf{r}W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})})^{2}, (3.31)$$

Now use the method of proof of Lemma 1 with $G(r) \equiv S(r) - S(0)$, ρ the smallest zero of G(r) on $r_1 \leq r \leq r_2$ and

$$f(\mathbf{r}) \equiv 2(S(0) - M(0)) \left(\frac{\mathbf{r} W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})}\right) + \left(\frac{\mathbf{r} W_{C}^{\dagger}(\mathbf{r})}{W_{C}(\mathbf{r})}\right)^{2}.$$

From Theorem 2.1 it follows that if $\beta_2 \leq (\beta_1 - \beta^*)/2$ then f(r) is monotonic increasing on $0 < r \leq r_2$. Then from (3.31) and a) through d) of our hypotheses it follows that

$$\frac{\mathrm{rdS}(\mathbf{r})}{\mathrm{dr}} \Big|_{\mathbf{r}=\rho} \ge \sigma(0) + S(0) + S^{2}(0) - M^{2}(0) + \mathbf{f}(0)$$

$$=\frac{\mathrm{rdS}(\mathbf{r})}{\mathrm{dr}}\Big|_{\mathbf{r}=0}=0,$$

and our lemma follows as in the proof of Lemma 1.

LEMMA 5B. Let $z^2 p(z)$ satisfy the conditions of Theorem 2.1. Let $\beta_2 < 0$, $|\beta_2| \le (\beta_1 - \beta)^2$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed θ , $N(r_1) > N(0)$, $S(r_1) > S(0)$, and if for all $0 < r_1 \le r \le r_2 < R^*$ we have

a) $v(\mathbf{r}) \ge v(0)$, b) $\sigma(\mathbf{r}) \ge \sigma(0)$, c) $T(\mathbf{r}) \ge T(0)$, d) $\Im\{\frac{\mathbf{z}W'}{W}\} \le \beta_2$, e) $\frac{\mathbf{r}W'_C(\mathbf{r})}{W_C(\mathbf{r})} \ge \max (\beta^* - |\beta_2|, 0)$,

then it follows that $S(\mathbf{r}) > S(0)$ for all $\mathbf{r}_1 \le \mathbf{r} \le \mathbf{r}_2$.

PROOF. The proof proceeds precisely as that of Lemma 5A except that Lemma 4B is used in place of Lemma 4A, and the condition $|\beta_2| \leq (\beta_1 - \beta^*)/2$ replaces $\beta_2 \leq (\beta_1 - \beta^*)/2$.

LEMMA 6. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for fixed $\theta = T(r_1) > T(0)$, and if for all $0 < r_1 \le r \le r_2 < R^*$ we have

a) $\tau(\mathbf{r}) \geq \tau(\mathbf{0})$, b) $\mathfrak{J}^{2}\left\{\frac{\mathbf{z}W'}{W}\right\} \geq \beta_{2}^{2}$,

then T(r) > T(0) for all $r_1 \le r \le r_2$.

PROOF. With $G(\mathbf{r})$ and ρ defined as in Lemma 1, we obtain from (3.18) and our hypotheses

$$\frac{\mathrm{rdT}(\mathbf{r})}{\mathrm{d}\mathbf{r}}\Big|_{\mathbf{r}=\rho} > \tau(0) + \mathrm{T}(0)(1 - 2\beta^{*}) - \mathrm{T}^{2}(0) + \beta_{2}^{2}$$
$$= \frac{\mathrm{rdT}(\mathbf{r})}{\mathrm{d}\mathbf{r}}\Big|_{\mathbf{r}=\rho} = 0,$$

and the lemma follows as in the proof of Lemma 1.

LEMMA 7A. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1. Let $0 < \beta_2 \le \beta_1 - \beta^*$, and let r_1 satisfy the inequalities $0 < r_1 < R^*$. If for a fixed $\theta = S(r_1) > S(0), N(r_1) > N(0), T(r_1) > T(0), \mathcal{J}\left\{\frac{r_1 e^{i\theta} W^*(r_1 e^{i\theta})}{W(r_1 e^{i\theta})}\right\} > 0$; and if for all $0 < r_1 \le r \le r_2 < R^*$ we have a) $\sigma(r) \ge \sigma(0)$,

b)
$$\tau(\mathbf{r}) \ge \tau(0)$$
,
c) $\nu(\mathbf{r}) \ge \nu(0)$,

d)
$$\Im\{\frac{zW'}{W}\} \leq \beta_2$$

$$e) \; \frac{\mathbf{r} \mathtt{W}_{C}^{*}(\mathbf{r})}{\mathtt{W}_{C}^{*}(\mathbf{r})} \geq \max \; \left(\boldsymbol{\beta}^{*} \; \text{-} \; \boldsymbol{\beta}_{2} \; \text{,} \; \boldsymbol{0} \right) \text{,} \\$$

then T(r) > T(0) for all $r_1 \le r \le r_2$.

PROOF. From (3.11) and e) of our hypotheses it follows that

 $(N(0) + \frac{rW_{C}^{*}(r)}{W_{C}(r)}) \ge 0$ for all $r_{1} \le r \le r_{2}$. Then from (3.18) and Corollary 3A we have

$$\frac{\mathrm{rdT}}{\mathrm{dr}} \ge \tau(\mathbf{r}) + T(\mathbf{r})(1 - 2\mathbf{r} \frac{W_{\mathrm{C}}^{\prime}(\mathbf{r})}{W_{\mathrm{C}}(\mathbf{r})}) - T^{2}(\mathbf{r}) + (N(0) + \frac{\mathrm{r}W_{\mathrm{C}}^{\prime}(\mathbf{r})}{W_{\mathrm{C}}(\mathbf{r})})$$
(3.32)

for all $r_1 \leq r \leq r_2$.

Now use the method of proof of Lemma 1 with $G({\tt r})$ and ρ defined as in Lemma 1 and with

$$f(r) = -2(T(0) - N(0)) \frac{rW_{C}^{\dagger}(r)}{W_{C}(r)} + (\frac{rW_{C}^{\dagger}(r)}{W_{C}(r)})^{2}$$

From Theorem 2.1 it follows that if $\beta_2 \leq \beta_1 - \beta^*$ then f(r) is monotonic increasing on $0 < r \leq r_2$. Thus, from (3.32) and b) of our hypotheses we have

$$\frac{rdT(r)}{dr} \Big|_{r=0} > \tau(0) + T(0) - T^{2}(0) + N^{2}(0) + f(0)$$
$$= \tau(0) + T(0)(1 - 2\beta^{*}) - T^{2}(0) + (N(0) + \beta^{*})^{2}$$
$$= \frac{rdT(r)}{dr} \Big|_{r=0} = 0,$$

and our lemma follows as in the proof of Lemma 1.

LEMMA 7B. Let $z^{2}p^{*}(z)$ satisfy the condition of Theorem 2.1. Let r_{1} satisfy the inequalities $0 < r_1 < R^*$ and let $\beta_2 < 0$, $|\beta_2| \le \beta_1 - \beta^*$. If for a fixed θ $S(r_1) > S(0), M(r_1) > M(0), T(r_1) > T(0), \Im\{\frac{r_1 e^{i\theta} W_{\beta}^{i}(r_1 e^{i\theta})}{W_{\beta}(r_1 e^{i\theta})}\} < 0$, and if for all **_***

< r_1 ≤ r ≤ r_2 < R we have
a)
$$\sigma(r) \ge \sigma(0)$$
,
b) $\tau(r) \ge \tau(0)$,
c) $\mu(r) \ge \mu(\theta)$,
d) $\Im\{\frac{zW'}{W}\} \ge \beta_2$,
e) $\frac{rW'_C(r)}{W_C(r)} \ge \max(\beta^* - |\beta_2|,)$,

then T(r) > T(0) for all $r_1 \le r \le r_2$.

PROOF. The proof proceeds precisely as that of Lemma 7A except that Corollary 3B is used in place of Corollary 3A.

LEMMA 8. If for all θ , $0 \le \theta \le 2\pi$, and for all $0 < r < R^*$ we have a) $\sigma(\mathbf{r}) \geq \sigma(0)$, b) $\tau(\mathbf{r}) \geq \tau(0)$, c) $\mu(\mathbf{r}) \geq \mu(0)$, d) $\nu(\mathbf{r}) \geq \nu(0)$ then it follows that

e)
$$\frac{dS}{dr}\Big|_{r=0} \ge 0$$
, f) $\frac{dT}{dr}\Big|_{r=0} \ge 0$, g) $\frac{dM}{dr}\Big|_{r=0} \ge 0$ and h) $\frac{dN}{dr}\Big|_{r=0} \ge 0$

where $a \Rightarrow e$, $b \Rightarrow f$, $c \Rightarrow g$, and $d \Rightarrow h$. Moreover, strict inequality holds in e) through h) if $\beta_1 > \beta^* > 0$.

PROOF. We prove that $b \Rightarrow f$. All four implications can be proved using the same techniques.

For $0 < r < R^*$ we have

0

$$\frac{zW'}{W} = \beta + c_1 z + \cdots + c_n z^n + \cdots \text{ and } (3.33)$$

$$\frac{zW_{C}^{*}(z)}{W_{C}(z)} = \beta^{*} + c_{1}^{*}z + \dots + c_{n}^{*}z^{n} + \dots$$
(3.34)

where
$$c_1 = \frac{-p_1}{2\beta}$$
 and $c_1^* = \frac{-Cp_1^*}{2\beta^*}$ with p_1 and p_1^* defined by (1.2) and (1.9)

respectively.

Now $\tau(\mathbf{r}) \geq \tau(0)$ if and only if $-\Re\{z^2 p(z) - p_0\} + r^2 p_C^*(\mathbf{r}) - p_0^* \geq 0$. Therefore, if $\tau(\mathbf{r}) \geq \tau(0)$ for all θ , $0 \leq \theta \leq 2\pi$, and all $0 \leq \mathbf{r} < \mathbb{R}^*$, it follows that

 $(-\Re\{p_1z\} + Crp_1^*) \ge 0$ for sufficiently small r and for all θ .

Thus we must have

$$-\Re\{p_1 e^{i\theta}\} + Cp_1^* \ge 0 \text{ for all } \theta.$$
(3.35)

Now from (3.33) and (3.34) we have

$$\frac{\mathrm{d}\mathbf{T}}{\mathrm{d}\mathbf{r}} \Big|_{\mathbf{r}=0} = \Re \{ \mathbf{c}_1 \mathbf{e}^{\mathbf{i}\theta} \} - \mathbf{c}_1^*$$
$$= \Re \{ \frac{-\mathbf{p}_1 \mathbf{e}^{\mathbf{i}\theta}}{2\beta} \} + \frac{\mathbf{C}\mathbf{p}_1^*}{2\beta^*}.$$

Then if we write β in the form $|\beta| e^{i\phi}$, we have

$$\frac{dT}{dr}\Big|_{r=0} = \Re\{\frac{-p_1 e^{i(\theta - \phi)}}{2|\beta|}\} + \frac{cp_1^*}{2\beta^*}.$$
(3.36)

Thus
$$\frac{dT}{dr}\Big|_{r=0} \ge 0$$
 if and only if $-\Re\{p_1 e^{i(\theta-\phi)}\} + \frac{Cp_1^*}{(\frac{\beta}{|\beta|})} \ge 0$ (3.37)

for all θ .

However, since $\beta_1 \ge \beta^* > 0$, we have $0 < \beta^* / |\beta| \le 1$ and it follows from (3.35) and (3.37) that $\frac{dT}{dr}|_{r=0} \ge 0$ with strict inequality if $\beta_1 > \beta^*$.

4. THEOREM A AND THE MAIN THEOREM.

We have designated the first result of this section as Theorem A since it is our analog of Theorem A of [1] when $\gamma = 0$.

THEOREM A. Let $W \equiv W(z) \equiv W_{\beta}(z) = z^{\beta}[1 + \sum_{n=1}^{\infty} b_n z^n]$ be the unique solution of

W''(z) + p(z)W(z) = 0 where

$$z^{2}p(z) = p_{0} + p_{1}z + \cdots + p_{n}z^{n} + \cdots$$

is holomorphic in $\left| \, z \right| \, < \, l,$ and β = β_1 + $i\beta_2$ with 0 < $\beta_1 \leq 1/2$.

Let $W_C \equiv W_C(z) \equiv W_n(z) = z^{\beta^*}[1 + \sum_{n=1}^{\infty} b_n^*(C)z^n]$ be the unique solution of $W''(z) + z^2 p_C^*(z)W(z) = 0$ where

$$z^{2}p_{C}^{*}(z) = C[z^{2}p^{*}(z) - p_{0}^{*}] + p_{0}^{*} \text{ with}$$

$$z^{2}p^{*}(z) = p_{0}^{*} + p_{1}^{*}z + \cdots + p_{n}^{*}z^{n} + \cdots, p_{0}^{*} \le 1/4,$$

holomorphic in |z| < 1 and real on the real axis; and where C > 0 and $0 < \beta^* \le 1/2$. Let R(C) be the smallest positive root of $W'_C(r)$, 0 < r < 1, if such exists.

For $\left|\,z\right|\,<\,$ l let $z^{2}p(\,z)\,$ and $z^{2}p^{\,\star}(\,z)\,$ satisfy the inequalities

(i)
$$\Re\{z^2 p^*(z)\} \le |z|^2 p^*(|z|),$$

(ii) $|z^2 p(z) - p_0| \le |z|^2 p_0^*(|z|) - p_0^*$

Then for $|\beta_2| \leq (\beta_1 - \beta^*)/2$ it follows that

$$\Re\{\frac{zW'}{W}\} \geq \frac{rW_{C}'(r)}{W_{C}(r)} > 0$$

for all $|\mathbf{z}| = \mathbf{r} < R^* \equiv \min(R(C), 1)$.

We first note that (i) of our hypotheses ensures that $z^2 p^*(z)$ satisfies the conditions of Theorem 2.1. In addition (ii) implies inequalities a) through c) of Lemma 8. For example, inequality a) of Lemma 8 is valid if and only if

$$\Re\{z^{2}p(z)\} + |z|^{2}p_{C}^{*}(|z|) \geq \Re\{p_{0}\} + p_{0}^{*},$$

and this is true if and only if

$$\Re\{z^{2}p(z) - p_{0}\} \ge - \{|z|^{2}p_{C}^{*}(|z|) - p_{0}^{*}\}$$

which in turn follows from (ii).

We will obtain the result of Theorem A by proving that $T(\mathbf{r}) > T(0)$ on any ray $\theta = \text{constant}, 0 < \mathbf{r} < \mathbb{R}^*$. To establish this fact we will need Lemmas 1 through 7 whose hypotheses require us to know whether $\Im\{\frac{zW'}{W}\} \ge \beta_2$ or $\Im\{\frac{zW'}{W}\} \le \beta_2$. Therefore, we introduce on each ray $\theta = \text{constant}, 0 < \mathbf{r} < \mathbb{R}^*$, the points ρ_i where ρ_i and ρ_{i+1} , $\rho_i < \rho_{i+1}$, are consecutive values of \mathbf{r} at which $\Im\{\frac{zW'}{W}\} - \beta_2$ changes sign. We then show that $T(\mathbf{r}) > T(0)$ on every interval $\rho_i \le \mathbf{r} \le \rho_{i+1}$.

The proof requires consideration of the following four cases.

For $\beta_2 = 0$ the result of Theorem A was established by Robertson [1] for $W = W_{\alpha}(z)$ and $W_C = W_{\alpha}(z)$ and by Brown [2] for $W = W_{\beta}(z)$, $W_C = W_{\alpha}(z)$.

We will assume that $\frac{rW_{C}^{\prime}(\mathbf{r})}{W_{C}(\mathbf{r})} > \beta^{*} - |\beta_{2}|$ for all $0 \le \mathbf{r} < \mathbf{R}^{*}$ since if for some ρ , $0 < \rho < \mathbf{R}^{*}$, we have $\frac{\rho W_{C}^{\prime}(\rho)}{W_{C}(\rho)} = \beta^{*} - |\beta_{2}|$, we can restrict our attention to the interval $0 \le \mathbf{r} < \rho$ and then use Lemma 1 on the interval $\rho < \mathbf{r} < \mathbf{R}^{*}$. PROOF OF CASE 1.

- 1. From Lemma 8 it follows that there exists a $_{0}^{*}$, $0 < _{0}^{*} < _{0}_{1}$, such that for all $\theta S(\mathbf{r}) > S(0)$, $T(\mathbf{r}) > T(0)$, $M(\mathbf{r}) > M(0)$ and $N(\mathbf{r}) > N(0)$ for all $0 < \mathbf{r} < _{0}^{*}$.
- 2. Now fix θ and apply Lemma 6 to the interval $\rho^* \leq r \leq \rho$ to obtain T(r) > T(0) on $\rho^* \leq r \leq \rho_1$.
- 3. From definitions (3.10) and (3.11), the definition of the ρ_i and the monotonicity of $\frac{rW_C'(r)}{W_C(r)}$ on $0 < r < R^*$, it follows that $M(\rho_1) > M(0)$ and $N(\rho_1) > N(0)$.

- 4. Then by Lemma 5A applied to the interval $\rho^* \leq r \leq \rho_1$ we have $S(\rho_1) > S(0)$.
- 5. By Lemma 7A it then follows that T(r) > T(0) on the interval $\rho_1 \le r \le \rho_2$.
- 6. By Lemma 6, T(r) > T(0) on the interval $\rho_2 \le r \le \rho_3$.
- 7. By 4 above and Lemma 2 we have $S(\rho_2) > S(0)$.
- 8. As in 3 above we obtain $M(\rho_2) > M(0)$, $N(\rho_2) > N(0)$ and $N(\rho_3) > N(0)$.
- 9. Then by Lemma 5A we have $S(\rho_3) > S(0)$.
- 10. From 8, 9 and Lemma 7A it follows that $T(\mathbf{r}) > T(0)$ on the interval $\rho_3 \leq r \leq \rho_4$.

By successive iterations of steps 6 through 10 it follows that if

 $T(\mathbf{r}) > T(0)$ on $\rho_i \leq r \leq \rho_{i+1}$ then $T(\mathbf{r}) > T(0)$ on $\rho_{i+1} \leq r \leq \rho_{i+2}$. Moreover, the proof actually demonstrates that T(r) > T(0) on any interval of the ray θ = constant, $0 < r < R^*$, on which either $\Im\{\frac{zW'}{W}\} - \beta_2 \ge 0$ or $\Im\{\frac{zW'}{W}\} - \beta_2 \le 0$. Thus it follows that $T(r) > T(0) = \beta_1 - \beta^* \ge 0$ for all $0 < r < R^*$ on any ray θ = constant. PROOF OF CASE 2.

1. As in step 1 of Case 1 we have that there exists a $\rho^{\star}, \ 0 < \rho^{\star} < \rho_{\tau},$ such that for all θ , S(r) > S(0), T(r) > T(0), M(r) > M(0) and N(r) > N(0) for all $0 < r < p^*$.

2. By Lemma 7A it then follows that T(r) > T(0) on the interval $\rho^* \le r \le \rho_1$.

- 3. By Lemma 6 we have T(r) > T(0) on $\rho_1 \le r \le \rho_2$. 4. By definition (3.10) and the monotonicity of $\frac{rW_C'(r)}{W_C(r)}$ on $0 < r < R^*$ we have $M(\rho_1) > M(O)$.
- 5. By 1 above and Lemma 2 we have $S(\rho_1) > S(0)$.
- 6. Then by Lemma 5A it follows that $S(\rho_2) > S(0)$.
- 7. By definition (3.11) and the monotonicity of $\frac{rW_C(r)}{W_C(r)}$ on $0 < r < R^*$ we have $N(\rho_2) > N(0).$

8. Then by 3, 6, 7, and Lemma 7A we have T(r) > T(0) on the interval $\rho_2 \leq r \leq \rho_3$.

By successive iteration of steps 3 through 8 (omitting the reference to step 1 in step 5) it follows that if T(r) > T(0) on $\rho_i \le r \le \rho_{i+1}$ then T(r) > T(0) on $\rho_{i+1} \leq r \leq \rho_{i+2}$. Then as in Case 1 we obtain $T(r) > T(0) = \beta_1 - \beta^* \geq 0$ for all

 $0 < r < R^*$ on any ray θ = constant.

PROOFS OF CASE 3 AND CASE 4. The proofs of Case 3 and Case 4 are identical to those of Case 2 and Case 1 respectively except that all A lemmas are replaced by corresponding B lemmas.

COROLLARY A. Theorem A remains true if W(z) and W_C(z) are replaced by either $W_{\alpha}(z)$ and $W_{\alpha}(z)$ or by $W_{\alpha}(z)$ and $W_{\alpha}(z)$.

PROOF. The result follows from the fact that all of the lemmas used in the proof of Theorem A remain valid under the indicated substitutions.

Our Main Theorem will be derived from Theorem A precisely as the Main Theorem of [1] was derived from Theorem A of [1]. We will not reproduce Robertson's proofs but simply mention that his methods apply equally well to $W_{C}(z) = W_{*}(z)$ and $\alpha_{*,C}^{(z)} = W_{*}(z)$, and then summarize the needed results in the following lemma. $\beta_{*,C}^{(z)}$

LEMMA 4.1. Let $z^2 p^*(z)$ satisfy the conditions of Theorem 2.1 and let R be fixed, 0 < R < 1. Then there exists a $C \equiv C(R) > 0$ such that when $p_C^*(z) \equiv p_{C(R)}^*(z)$ we have $W_{C(R)}^{!}(R) = 0$ and $W_{C(R)}^{!}(r) > 0$ for all 0 < r < R. Moreover, for fixed $z^2 p^*(z)$ we have $\lim_{R \to 1} C(R) \equiv A(p^*) \equiv A$ is finite and $W_A^{!}(r) > 0$ for all 0 < r < 1. Ref. The value A, called the universal constant corresponding to $z^2 p^*(z)$, is largest in the sense that for any $\varepsilon > 0$ there exists an $r(\varepsilon)$, $0 < r(\varepsilon) < 1$, such that $W_A^{!}(r(\varepsilon)) = 0$ and $W_{A+\varepsilon}^{!}(r(\varepsilon)) \leq 0$.

THE MAIN THEOREM. Let

$$z^{2}p^{*}(z) = p_{0}^{*} + p_{1}^{*}z + \cdots + p_{n}^{*}z^{n} + \cdots$$

be nonconstant and holomorphic in |z|<1 and real on the real axis with $p_0^{\star}\leq 1/4$. Let

$$\Re\{z^2 p^*(z)\} \leq |z|^2 p^*(|z|) \text{ for } |z| < 1.$$
(4.1)

Let $z^2 p_A^*(z) = A(z^2 p^*(z) - p_0^*) + p_0^*$ where $A = A(p^*)$ is the universal constant corresponding to $z^2 p^*(z)$. Let

$$W_{\mathbf{A}}(\mathbf{z}) \equiv W_{\boldsymbol{\beta}^{*},\mathbf{A}}(\mathbf{z}) = \mathbf{z}^{\boldsymbol{\beta}^{*}}[1 + \sum_{n=1}^{\infty} \mathbf{b}_{n}^{*}(\mathbf{C})], |\mathbf{z}| < 1, \, \boldsymbol{\beta}^{*} > 0,$$

be the unique solution of

$$W''(z) + p_{\mathbf{A}}^{*}(z)W(z) = 0$$

corresponding to the smaller root of the indicial equation. Then the function

$$F_{A}(z) \equiv [W_{A}(z)]^{1/\beta^{*}} = z + \cdots$$

is a holomorphic function, univalent and starlike in |z| < 1, and is not both holomorphic and univalent in any larger circle whenever A > 0.

Let $z^2p(\,z)$ be holomorphic in $\big|\,z\big|\,<$ 1 with

$$|z^{2}p(z) - p_{0}| \le |z|^{2}p_{A}^{*}(|z|) - p_{0}^{*}$$
 (4.2)

for all |z| < 1. Let

$$W(z) \equiv W_{\beta}(z) = z^{\beta}[1 + \sum_{n=1}^{\infty} b_{n}z^{n}], |z| < 1,$$

 $\beta = \beta_1 + i\beta_2$, $\beta_1 > 0$, be the unique solution of

$$W''(z) + p(z)W(z) = 0$$

corresponding to the root β , with smaller real part, of the indicial equation.

Then if $|\beta_2| \leq \frac{\beta - \beta^*}{2}$ the function

$$F_{\beta}(z) = [W_{\beta}(z)]^{1/\beta} = z + \cdots$$

is a holomorphic function, univalent and spirallike in $|\,z\,|\,<$ 1. The constant A = $A(p^{*})$ is the largest possible one.

PROOF. From Theorem A we have

$$\Re\{\frac{\beta z F_{\beta}'(z)}{F_{\beta}(z)}\} \equiv \Re\{\frac{z W_{\beta}'(z)}{W_{\beta}(z)}\} \geq \frac{|z| W_{A}'(|z|)}{W_{A}(|z|)} > 0, |z| < 1.$$

$$(4.3)$$

Now if we choose $z^2 p(z) \equiv z^2 p_C^*(z)$ then $\beta_2 = 0$, $W_\beta(z) \equiv W_\beta(z) \equiv W_C(z)$ and from Theorem 3.23 of [2] we have

$$\Re\{\frac{zW_{C}'(z)}{W_{C}'(z)}\} \geq \frac{|z|W_{C}'(|z|)}{W_{C}(|z|)}, |z| < R(C).$$

$$(4.4)$$

Thus from (4.4) and the definition of A we have

$$\Re\{\frac{\mathbf{z}\mathbf{F}_{\mathbf{A}}^{\prime}(\mathbf{z})}{\mathbf{F}_{\mathbf{A}}(\mathbf{z})}\} \geq \frac{1}{\beta^{*}} \frac{|\mathbf{z}|W_{\mathbf{A}}^{\prime}(|\mathbf{z}|)}{W_{\mathbf{A}}^{\prime}(|\mathbf{z}|)} > 0, |\mathbf{z}| < 1.$$
(4.5)

From (4.3) it follows that $F_{\beta}(z)$ is univalent and spirallike in |z| < 1, and from (4.5) it follows that $F_{A}(z)$ is univalent and starlike in |z| < 1. Moreover, since equality holds in (4.4) when z is real and positive, and since $W'_{A+\varepsilon}(R) = 0$ for some R, 0 < R < 1, for arbitrarily small positive values of ε , it is clear that $F_{A+\varepsilon}(z)$ is not univalent in |z| < 1 no matter how small a positive ε we take. Thus the constant A is the largest possible. The proof that the radius of univalence of $F_{A}(z)$ is precisely 1 is contained in [1] page 265 and will not be reproduced here.

COROLLARY B. The Main Theorem is true when $W = W_{\alpha}(z)$ and $W_{C}(z) = W_{\alpha}(z)$ whenever $|\alpha_{2}| \leq \frac{\alpha_{1} - \alpha^{*}}{2}$ and also when $W = W_{\alpha}(z)$ and $W_{C}(z) = W_{\beta}(z)$ whenever $|\alpha_{2}| \leq \frac{\alpha_{1} - \beta^{*}}{2}$.

The proof of this corollary is immediate since all of our previous results remain valid under the indicated substitutions for W(z) and $W_C(z)$.

5. REMARKS.

We will now indicate how the results of our Main Theorem and Corollary B compare to or extend those of Robertson's Main Theorem in [1] for $\gamma = 0$.

In [1] the condition

$$\Re\{z^2 p(z)\} \le |z|^2 p_{\mathbf{A}}^*(|z|)$$
(4.6)

replaces our condition (4.2), there is no explicit bound on $|\alpha_2|$, and the results refer to the case W = W_{α}(z) and W_C = W_{α}(z).

Our condition (4.2) is independent of condition (4.6). When $\alpha^* \ge 1/2$ our Corollary B requires that

$$|\alpha_2| \le \frac{\alpha_1}{2} - \frac{1}{4}$$
 (4.7)

while (4.6) implies that

 $\alpha_{1} - \alpha_{1}^{2} + \alpha_{2}^{2} \le \alpha^{*} - {\alpha^{*}}^{2}$ $|\alpha_{2}| \le \alpha_{1} - \frac{1}{2}.$ (4.8)

so that

We refer now to the "exponent plane" of Figure 1 in which α_1 and β_1 are measured horizontally and α_2 and β_2 are measured vertically. Our conclusions are the following:

- 1. In region I only our Main Theorem applies.
- 2. In regions II only Robertson's Main Theorem applies.
- 3. In regions III U IV Robertson's Main Theorem applies and our Corollary B applies with W = $W_{\alpha}(z)$ and $W_{C} = W_{\alpha}(z)$.
- 4. In region IV Robertson's Main Theorem applies and our Corollary B applies with W = W_{α}(z) and W_C = W_{α}(z).

Thus it is in region I that we have an extension of the results of [1] and [2].

We note that we can obtain Robertson's Theorem A with $\gamma = 0$ from (3.18) with $W = W_{\alpha}(z)$ and $W_{C} = W_{\alpha}(z)$. This follows by noting first that the hypotheses of Theorem A of [1] imply that $\alpha_{1} \ge \alpha^{*}$ and that $\tau(r) \ge 0$ for all $0 \le r < 1$. Also, if $\alpha_{1} \ge \alpha^{*}$ then T(0) > 0, while if $\alpha_{1} = \alpha^{*}$ then $\alpha_{2} = 0$ and as in the proof of Lemma 8 it follows that T'(0) > 0. Now if we let ρ be the smallest zero of T(r) on 0 < r < 1 we obtain from (3.18)

$$\frac{\rho dT(\rho)}{dr} = \tau(\rho) + g^2 \{ \frac{\rho e^{i\theta} W_{\beta}(\rho e^{i\theta})}{W_{\beta}(\rho e^{i\theta})} \}.$$
(4.9)

Thus either $\frac{dT(\rho)}{d\rho} > 0$ or both terms in the right member of (4.9) vanish. The former conclusion yields an immediate contradiction to the definition of ρ . If we assume the latter conclusion then an examination of the successive derivatives of (3.18) shows that the first non-vanishing derivative of T(r) at ρ is positive and of even order. Thus $T(r) \ge 0$ for all $0 < r < R^*$.

Finally we point out that for $\gamma \neq 0$, $|\gamma| < \pi/2$, Robertson's Theorem A can be obtained by applying the same reasoning as above to the following analog of (3.18) where $W = W_{\alpha}(z)$ and $W_{C} = W_{\alpha}(z)$.

$$\frac{\mathrm{rdT}}{\mathrm{dr}} = \tau(\mathbf{r}) + T(\mathbf{r})(1 - \frac{2\mathrm{rW}_{\mathrm{C}}'(\mathbf{r})}{W_{\mathrm{C}}(\mathbf{r})}) - \sec\gamma T^{2}(\mathbf{r}) + \sec\gamma \vartheta^{2}\{\frac{\mathrm{zW}'}{W}\}.$$

REFERENCES

- 1. ROBERTSON, M.S. "Schlicht Solutions of W" + pW = 0" Trans. Amer. Math. Soc, 76, 254-275, 1954.
- 2. BROWN, R.K. "Univalent Solutions of W" + pW = 0" Can J. Math. 14, 69-78, 1962.
- ŠPAČEK, Lad. "Contribution à la théorie des fonctions univalentes" <u>Casopis</u> <u>Pést. Mat. Fys. 62</u>, 12-19, 1936.
- 4. POMMERENKE, CHR. Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.