RESEARCH NOTES

ALMOST CONVEX METRICS AND PEANO COMPACTIFICATIONS

R.F. DICKMAN, JR.

Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061 U.S.A.

(Received June 23, 1981)

<u>ABSTRACT</u>. Let (X,d) denote a locally connected, connected separable metric space. We say the X is S-metrizable provided there is a topologically equivalent metric ρ on X such that (X, ρ) has Property S, i.e., for any $\varepsilon > 0$, X is the union of finitely many connected sets of ρ -diameter less than ε . It is well-known that S-metrizable spaces are locally connected and that if ρ is a Property S metric for X, then the usual metric completion (\tilde{X}, ρ) of (X, ρ) is a compact, locally connected, connected metric space; i.e., (\tilde{X}, ρ) is a Peano compactification of (X, ρ) . In an earlier paper, the author conjectured that if a space (X,d) has a Peano compactification, then it must be S-metrizable. In this paper, that conjecture is shown to be false; however, the connected spaces which have Peano compactifications are shown to be exactly those having a totally bounded, almost convex metric. Several related results are given. <u>KEY WORDS AND PHRASES</u>. Almost Convex Metrics, Property S metrics, Peano spaces, Compactifications.

1980 MATHEMATICS SUBJECT CLASSIFICATIONS CODES. 54F25,54E35.

1. INTRODUCTION.

Throughout this note let (X,d) denote a metric space. We say that d is convex

provided that, for any pair x,y ϵ X, there is $z\epsilon$ X such that d(x,z) = d(z,y) = d(x,y)/2. It is *almost convex* if, for x,y ϵ X and $\epsilon > 0$, there is $z\epsilon$ X such that $|d(x,z)-d(x,y)/2| < \epsilon$ and $|d(z,y)-d(x,y)/2| < \epsilon$ [1,2].

We say that X is S-metrizable provided there is a topologically equivalent metric ρ on X such that (X,ρ) has Property S, i.e., for any $\varepsilon > 0$, X is the union of finitely many connected sets of ρ -diameter less than ε . It is well-known that Smetrizable spaces are locally connected and that if ρ is a Property S metric for X, then the usual metric completion $(\tilde{X},\tilde{\rho})$ of (X,ρ) is a compact, locally connected, connected metric space, i.e., $(\tilde{X},\tilde{\rho})$ is a Peano compactification of (X,ρ) [3, p. 154].

It is a famous result of R. H. Bing that any continuous curve P (i.e., a compact, locally connected, connected metric space) can be assigned a convex metric [1].

In an earlier paper [4], the author conjectured that, if X is locally connected and if X has a Peano compactification, then X is S-metrizable. In this paper we show, by example, that this conjecture is false; however, we do obtain a characterization of such spaces in terms of the existence of a totally bounded, almost convex metric for X. We also obtain several related results characterizing totally bounded (Smetrizable, almost convex) metrics.

2. PEANO COMPACTIFICATIONS.

THEOREM 2.1. A connected metric space (X,d) has a Peano compactification if and only if it has a topologically equivalent totally bounded, almost convex metric.

PROOF. The necessity. Let (P,r) be a Peano compactification of X, i.e., P is a continuous curve and X is a dense subset of P. By R. H. Bing's result, there exists an equivalent metric ρ for P such that ρ is convex. It then follows that $\sigma = \rho | X$ is totally bounded and almost convex; cf. [1, Thm. 10].

The Sufficiency. Let r be an almost convex, totally bounded metric for X. Let (\tilde{X},\tilde{r}) be the usual metric completion of (X,r). We will argue that (\tilde{X},\tilde{r}) is a Peano compactification of (X,r). Clearly, \tilde{X} is compact since r is totally bounded. Furthermore, \tilde{r} is a convex metric for \tilde{X} ; let $x,y \in \tilde{X}$. Since r is almost convex, there exists a sequences $x_1, x_2, \ldots, y_1, y_2, \ldots$, and z_1, z_2, \ldots in X such that

$$|\mathbf{r}(\mathbf{x}_{n},\mathbf{z}_{n}) - \mathbf{r}(\mathbf{x}_{n},\mathbf{y}_{n})/2| < 2^{-n} \text{ and } |\mathbf{r}(\mathbf{z}_{n},\mathbf{y}_{n}) - \mathbf{r}(\mathbf{x}_{n},\mathbf{y}_{n})/2| < 2^{-n}.$$

Since r is totally bounded, without loss of generality, we may assume that each of the sequences $x_1, x_2, \ldots, y_1, y_2, \ldots$, and z_1, z_2, \ldots is Cauchy in X. Then by the completeness of (\tilde{X}, \tilde{r}) , it follows that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$. Furthermore, if $\lim_{n \to \infty} z_n = z$, $\tilde{r}(x, z) = \tilde{r}(z, y) = \tilde{r}(x, y)/2$ since \tilde{r} is continuous. Thus \tilde{r} is convex and complete. It follows from Theorem 3.1 of [5] that the spheres $S_{\tilde{r}}(x, \varepsilon)$ of \tilde{X} are connected sets. This implies that \tilde{X} is locally connected and this completes the proof.

EXAMPLE 2.1. Let P be the square $\{(x,y) \in \mathbb{R}^2 : 0 \le x, y \le 1\}$ in the plane. For $n \in \mathbb{N}$, let $L_n = \{(1/n, y): 0 < y < 1\}$ and let $L_0 = \{(0, y): 0 < y < 1\}$. Set X = $P \setminus \bigcap_{n=0}^{\infty} L_n$. Then P is a Peano compactification of X; however, X is not S-metrizable. Suppose ρ is an S-metric for X and let A = $\{(x,1): 0 \le x \le 1\}$ and B = $\{(x,0): 0 \le x \le 1\}$. Then A and B are compact and hence $\rho(A,B) = \epsilon > 0$. Now the components C_1 , C_2 , ... of X (A \cup B) have limit points in each of A and B. Thus, any collection of connected sets of ρ -diameter less than $\epsilon/3$ that covers a component C_n has at least one such connected subset lying entirely in C_n . This implies that ρ is not an S-metric on P, d is almost convex and totally bounded.

3. <u>RELATED RESULTS</u>.

A <u>compatible normal sequence</u> in a space Z is a sequence u_1, u_2, \ldots of open covers of Z such that u_{n+1} star-refines u_n for $n = 1, 2, \ldots$ and so, for any $x \in Z$, $\{St(x, u_n):$ $n = 1, 2, \ldots\}$ is a neighborhood base for x [5].

THEOREM 3.1. [6, Prop. 23.4] A T_0 -space is metrizable if and only if it has a compatible normal sequence.

COROLLARY 3.1. A metric space X is totally bounded if and only if X has a compatible normal sequence U_1, U_2, \ldots where each U_n is a finite cover of X.

PROOF. Suppose (X,d) is totally bounded. It follows from the total boundedness of (X,d) that there is a finite open cover \mathcal{U}_1 of X such that $\delta_d(U) = 1/3$ for all $U \in \mathcal{U}_1$ where $\delta_d(U) = \sup\{d(x,y): x, y \in U\}$, the d-diameter of U. Since \mathcal{U}_1 is finite, there is a Lebesgue number $\varepsilon_1 < 3^{-2}$ such that, if $d(x,y) < \varepsilon_1$, then x and y be in some member of \mathcal{U}_1 . Again, by the total boundedness of (X,d), there is a finite open cover V_1 of x such that $\delta_d(V) < \varepsilon_1$. If $\varepsilon_2 < \varepsilon_1$ is a Lebesgue number for V_1 and \mathcal{U}_2 is any finite.

open cover of X such that $\delta_d(U) < \epsilon_2$ for any $U \epsilon U_2$, then U_2 star-refines U_1 . Continue in this manner and obtain a compatible normal sequence U_1, U_2, \ldots for X.

On the other hand, suppose u_1, u_2, \ldots is a compatible normal sequence for X where each u_n is finite. Then, in the usual metric ρ for X that is associated with u_1, u_2, \ldots as given by S. Willard [6], $\delta_{\rho}(\mathbf{U}) < 2^{n-1}$ and $\mathbf{U} \in \mathcal{U}_n$, $n = 2, 3, \ldots$. It then follows that, since each \mathcal{U}_n is finite, ρ is a totally bounded metric for X. This completes the proof.

COROLLARY 3.2. A metric space (X,d) is S-metrizable if and only if it has a compatible normal sequence u_1, u_2, \ldots where each u_n is a finite cover and the members of u_n are connected sets.

PROOF. The necessity follows from the argument above, together with the observation that the covers u_1, u_2, \ldots can be selected so as to consist of finitely many open and connected sets.

The sufficiency. We observe that, if u_1, u_2, \ldots is a compatible normal sequence for X where each u_n is finite and the members of u_n are connected sets and if ρ is the usual metric associated with u_1, u_2, \ldots as given in [6], then, for $\mathrm{U}\varepsilon u_n$, $\delta_{\rho}(\mathrm{U}) < 2^{n-1}$, $n = 2, 3, \ldots$ and the sets $\mathrm{U}\varepsilon u_n$ are connected. Thus, for any $\varepsilon > 0$ and $\mathrm{k}\varepsilon \mathbb{N}$ so that $0 < 2^{-k} < \varepsilon$, $\mathbf{x} = \cup \{\mathrm{U}:\mathrm{U}\varepsilon u_k\}$ is a finite cover of X by connected sets of ρ -diameter less that ε . This completes the proof.

THEOREM 3.2 [2]. A connected metric space X has an almost convex metric if and only if it has a compatible normal sequence u_1, u_2, \ldots such that (i) each pair of points that is covered by either an element of u_{n+1} or the union of a pair of intersecting elements of u_{n+1} can be covered by an element of u_n and (ii) each pair of points that can be covered by an element of u_n can be covered by the union of two intersecting elements of u_{n+1} .

It is, apparently, very difficult to combine the total boundedness (finiteness) conditions of Corollaries 3.1 and 3.2 and the intersection-type properties of Theorem 3.2. It would be very desirable to do so in light of the results of the previous section.

602

REFERENCES

- 1. BING, R.H. Partitioning a set, Bull. Amer. Math. Soc. 55, 1101-1110, 1949.
- 2. BING, R.H. Extending a metric, Duke Math. J. 14, 511-519, 1947.
- 3. WHYBURN. G.T. Analytic Topology, Amer. Math. Soc. Colloq. Publ, Vol. 28, 1942.
- DICKMAN, R.F., JR. Peano compactifications and Property S metric spaces, <u>Internat. J. Math. and Math. Sci.</u> 4, 695-700, 1980.
- 5. LELEK, A. and NITKA, W. On convex metric spacesI, Fund. Math. 49, 183-204, 1961.
- 6. WILLARD, S. General Topology, Addison-Wesley, 1968.