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ABSTRACT. Let (X,d) denote a locally connected, connected separable metric space.

We say the X is S-metrizable provided there is a topologically equivalent metric p on

X such that (X,p) has Property S, i.e., for any e > 0, X is the union of finitely

many connected sets of 0-diameter less than e. It is well-known that S-metrizable

spaces are locally connected and that if p is a Property S metric for X, then the

usual metric completion (,) of (X,p) is a compact, locally connected, connected

metric space; i.e., (,$) is a Peano compactification of (X,p). In an earlier paper,

the author conjectured that if a space (X,d) has a Peano compactification, then it

must be S-metrizable. In this paper, that conjecture is shown to be false; however,

the connected spaces which have Peano compactificatons are shown to be exactly those

having a totally bounded, almost convex metric. Several related results are given.
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i. INTRODUCTION.

Throughout this note let (X,d) denote a metric space. We say that d is convex
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provided that, for any pair x,yX, there is zgX such that d(x,z) d(z,y) d(x,y)/2.

It is Tmos ovex if, for x,yeX and O, there is zX such that Id(x,z)-d(x,y)/2

a and Id(z,y)-d(x,y)/21 [1,2].

We say that X is S-metizae provided there is a topologically equivalent met-

ric on X such that (X,$) has Property S, i.e., for any 0, X is the union of

finitely many connected sets of 0-diameter less than . It is well-known that S-

metrizable spaces are locally connected and that if is a Property S metric for X,

then the usual metric completion (X,) of (X,) is a compact, locally connected, con-

nected metric space, i.e., (,) is a Peano compactification of (X,) [3, p. 154].

It is a famous result of R. H. Bing that any continuous curve P (i.e., a compact,

locally connected, connected metric space) can be assigned a convex metric [I].

In an earlier paper [4], the author conjectured that, if X is locally connected

and if X has a Peano compactification, then X is S-metrizable. In this paper we show,

by example, that this conjecture is false; however, we do obtain a characterization

of such spaces in terms of the existence of a totally bounded, almost convex metric

for X. We also obtain several related results characterizing totally bounded (S-

metrizable, almost convex) metrics.

2. PEANO COMPACTIFICATIONS.

THEOREM 2.1. A connected metric space (X,d) has a Peano compactification if and

only if it has a topologically equivalent totally bounded, almost convex metric.

PROOF. The necessity. Let (P,r) be a Peano compactification of X, i.e., P is a

continuous curve and X is a dense subset of P. By R. H. Bing’s result, there exists

an equivalent metric for P such that is convex. It then follows that e X is

totally bounded and almost convex; cf. [i, Thm. i0].

The Sufficiency. Let r be an almost convex, totally bounded metric for X. Let

(,) be the usual metric completion of (X,r). We will argue that (,) is a Peano

compactification of (X,r). Clearly, X is compact since r is totallv bounded.

Furthermore, r is a convex metric for X" let x,yX. Since r is almost convex, there

exists a sequences Xl,X2,...,yl,y2
and Zl,Z 2

in X sch that

r(x ,z r(x ,yn)/212-n and Ir(z
n yn r(x ,v )/2 2

-n

n n n n n
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Since r is totally bounded, without loss of generality, we may assume that each of

the sequences Xl,X2,...,yl,Y2,..., and Zl,Z2,... is Cauchy in X. Then by the com-

pleteness of (X,r) it follows that lim x x and lim Yn Y" Furthermore if
nn- n->

lim z z, r(x,z) r(z,y) r(x,y)/2 since r is continuous. Thus r is convex and
n

n-oo
complete. It follows from Theorem 3.1 of [5] that the spheres S~(x,) of X are con-

r

nected sets. This implies that X is locally connected and this completes the proof.

EXAMPLE 2.1. Let P be the square {(x,y)2 0 x,y i} in the plane. For

nq, let Ln {(i/n,y): 0 y I} and let L
0

{(O,y): 0 v I}. Set X

P\n0 Ln. Then P is a Peano compactification of X; however, X is not S-metrizable.

Suppose 0 is an S-metric for X and let A {(x,l): 0 x i} and B {(x,O): 0 x

i}. Then A and B are compact and hence 0(A,B) e > O. Now the components CI, C 2,

of X\(A u B) have limit points in each of A and B. Thus, any collection of con-

nected sets of 0-diameter less than s/3 that covers a component C has at least one
n

such connected subset lying entirely in C This implies that p is not an S-metric
n

for X; however, if d is the relative metric on X inherited from the usual metric on

P, d is almost convex and totally bounded.

3. RELATED RESULTS.

A compatible normal sequence in a space Z is a sequence LI,U2
of open covers

of Z such that Un+1 star-refines Un for n 1,2 and so, for any xsZ, {St(X,Un):

n 1,2 is a neighborhood base for x [5].

THEOREM 3.1. [6, Prop. 23.4] A To-space is metrizable if and only if it has a

compatible normal sequence.

COROLLARY 3.1. A metric space X is totally bounded if and only if X has a com-

patible normal sequence UI,U2,... where each Un is a finite cover of X.

PROOF. Suppose (X,d) is totally bounded. It follows from the total boundedness

of (X,d) that there is a finite open cover U1 of X such that 6d(U) 1/3 for all Us[l
1

where $d(U) sup{d(x,y): x,yeU}, the d-diameter of U. Since U1 is finite, there is

-2
a Lebesgue number el 3 such that, if d(x,y) el’ then x and y be in some member

of LI I. Again, by the total boundedness of (X,d), there is a finite open cover V
1

of

x such that 6d(V) i" If 2 Sl is a Lebesgue number for V
1

and U2 is any fin
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open cover of X such that 6d(U) < e
2

for any UeU2, then U2 star-refines UI" Continue

in this manner and obtain a compatible normal sequence i,2,... for X.

On the other hand, suppose UI,2,... is a compatible normal sequence for X where

each U is finite. Then, in the usual metric p for X that is associated with U1 2n

as given by S. Willard [6], 6 (U) < 2
n-I

and UEU n 2 3 It then follows
p n

that, since each U is finite, 0 is a totally bounded metric for X. This completes
n

the proof.

COROLLARY 3.2. A metric space (X,d) is S-metrizable if and only if it has a

compatible normal sequence i’2’’’" where each Un is a finite cover and the members

of U are connected sets.
n

PROOF. The necessity follows from the argument above, together with the obser-

vatlon that the covers UI,U2,... can be selected so as to consist of finitely many

open and connected sets.

The sufficiency. We observe that, if UI,2 is a compatible normal sequence

for X where each is finite and the members of are connected sets and if p is
n n

the usual metric associated with UI,2 as given in [6], then, for UeU 6 (U)n’ p

2n-l, n 2,3,... and the sets Ue are connected. Thus, for any e > 0 and ke so
n

-k
that 0 < 2 < e, x D{U:UeUk} is a finite cover of X by connected sets of 0-diam-

eter less that e. This completes the proof.

THEOREM 3.2 [2]. A connected metric space X has an almost convex metric if and

only if it has a compatible normal sequence UI,U2,... such that (i) each pair of

points that is covered by either an element of Un+l or the union of a pair of inter-

secting elements of Un+l can be covered by an element of Un and (ii) each pair of

points that can be covered by an element of U can be covered by the union of two
n

intersecting elements of Un+l"
It is, apparently, very difficult to combine the total boundedness (finiteness)

conditions of Corollaries 3.1 and 3.2 and the intersection-type properties of Theorem

3.2. It would he very desirable to do so in light of the results of the previous

section.
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