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ABSTRACT. The concept of topological divisor of zero has been extended to endo-

morphisms of a locally convex topological vector space (LCTVS). A characterization

of singular endomorphisms, similar to that of Yood [i], is obtained for endomor-

phisms of a barrelled Ptk (fully complete) space and it is shown that each such

endomorphism is a topological divisor of zero. Furthermore, properties of the ad-

joint of an endomorphism are characterized in terms of topological divisors of zero,

and the effect of change of operator topology on such a characterization is given.
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1. INTRODUCT ION.

The reader should be familiar with barrelled spaces and have available the

four references listed. The following notation and definitions will be used.

IX, T1 is an LCTVS over a field K of complex numbers, X’ is its topological dual,

and C{X, TI the algebra of all the T-continuous endomorphisms of X. w oIX,X’) is

the weak topology on X by X’, w* oIX’,X), and 8’ is the topology on X’ of uniform

convergence on all the w-bounded subsets of X--the strong topology.

CIX,TI
_

C[X,w) can be made into a topological space in a number of ways. If

A is a family of w-bounded (hence bounded) subsets of X and N NIT) is a T-neigh-

borhood base at zero, then the sets
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N(A,V) {TgC{X, TI TA V},

where A and V run through A and N respectively, form a neighborhood base at zero

for a locally convex vector topology IA, TI on CIX,TI, the operator topology of

uniform convergence on members of A relative to T. The space

can be topologized in a similar manner. For each TgC(X,w) its adjoint is a w*-

continuous endomorphism on X’, i.e. TgC{X’,w*) C{X’,’). Let A be a family of

bounded subsets of X which contains the family F of all the finite subsets of X.

The topology TA on X’ of uniform convergence on the members of A is then stronger

than w*, in fact it is between w* and B’. If for each TgC{X,w), TA A then

C{X’,w*) _c CIX’,TA) _c C{X’,’). If A F, {F,T) is the operator topology of point-

wise convergence relative to T while in the case of A B the class of all w-

bounded subsets of X, {B,T) is the strong operator topology relative to T. Finally

if A
__

E, A X’ is its absolute polar, similarly B is the absolute polar, in
o

X, of B __c X’.

Given Tg(C(X,[), (A,[)) and (D,-<) a directed set, the following definition

extends the concept of topological divisors of zero (tdz) to C(X,[).

DEFINITION i. T is a left (right) topological divisor of zero, itdz(rtdz), if

there is a net {$6: eD} c__ C(X,T) which doesn’t converge to ze’ro, written S 0,

yet the net TS6(S6T) does converge to zero, written TS6 O(ST+0), in

REMARK. This means, there are A’ g A and V’ g such that SA’ V’ frequently,

yet for all A e A and V e N, TSA c__ (S6TA_V) eventually.

Following Yood [i] we use Z(Zr) to denote the sets of all left (right) tdz

and /IHr) their respective complements in CIX, T). Furthermore, IGr) will mean

the sets of all left (right) regular elements of C(X,T) and S(Sr) their comple-

ments. Finally, (r) are the sets of all left (right) divisors of zero idz

(rdz).

2. BAS IC RESULTS.

It can easily be seen that all the basic properties of tdz remain valid as in

the case of a Banach space. Some of them are listed in the following lemma.

LEMMA I. The following inclusions are valid in C(X,[)
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Zl, Nr r

a) !Z

b) m Sl, Z r rS

c) G/ Hr, Gr H/

d) n Sr_N Gr S1
_

e) G Gr nHr Gr

A slighz modification in Yood’s proof of Theorems 3.1 and 3.2 ([i], p. 493) yields

the follpwing result.

PROPOSITION i.

a) {T: T is not injective}.

b) r {: + X).

We shall refer to TEC{X,[) as to a topological isomorphism if T is injective

and I-relatively open as a p from X onto TX.

For yEX and x’EX’ we define yx’EC(X,[) by yx’ (x) x’(x)y.

The next theorem characterizes topological isomorphism in tes of tdz.

THEOM i. TEC(X,T} is a T-topological isomorphism iff

PROOF. A I-topological isorphism can not be an itdz. For if it were with

(S}, A’ and V’ as in Rerk after Definition i, S6A’ V’ frequently yet TSA V

eventually for all AeA and YEN, particularly for U TV’ because T is open. This

would, however, imply that TSGA’ U TV’ eventually which is impossible. If T is

not a T-topological isomorphism, T is either not injeative, or T is injective but

T-I is not T-relatively open. T bein not injective implies, accordingly to Lena

la, T ZZ. On the other hand, T
-I

bein not I-relatively open implies the

existence of a net {y6} TX and the net {x T-ly6} with the property that y 0

and x 0 in . Let 0 + x’EX’ and construct the endomorphisms S x2x’.
Then the net {S} C{X,[) is such that S 0 yet TS in (A,[}. To see this,

take AEA and VEN, then TSA x’ (A)yG. [-bodedness of A and T-continuity of x’

imply that M suP{I<a,x’> :aEA} exists. en y implies that y M-Iv eventually,

heDce TSA V eventually.

COROLLARY i. T (C{X,w), {A,w)) iff T is a w-topological isomorphism.

THEO 2. TEC(X,w) is surjectlve iff TEHr {C{X,w), {,)).
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PROOF Let T be surjective If Tg2r
_

(C(X,wl, T(F,T)), then with S,
A’ VgF and V’cN as in Remark, we have SF V’ frequently Since STF c_ V event-

ually for all EgF and VN, STF1 SF0 _c V’ eventually for F
1

T-IF, which contra-

dicts the choice of the net S.
Conversely, assume T is not surjective. In the case that its range is not

dense in X, according to Lemma ib, TENr _c Z r. If however the range of T is dense

in X, its adjoint T’ is injective but not we-relatively open, hence there is a net

0 in w*-topology yet x 0{y c_q T’’ and the net {x’ (T’) such that y
Let 0 # x X and construct the endomorphisms $6 Xo@X6 C(X, II. The net

O

{$6} has the property that S 0 in (F,T) yet ST 0 in the same topology. The

map (,\,x) Ax is separately continuous. This proves that TgZ r.
The next four lemmas will be used to sharpen the results obtained so far.

LEMMA 2. A relatively open, continuous endomorphism of a barrelled space must

have a barrelled range.

PROOF. If TX is not barrelled there is a net {y6} _c TX which tends to zero

and doesn’t belong to a barrel B in TX. Then the net {x T-lye} can not tend to

-i
zero because it is not eventually in the neighborhood U T B.

LEM}iA 3. Any relatively open endomorphism T of a complete space must have a

closed range.

PROOF. Let {y} be a net in the range of T and let y6 y. Since {y6} is a

Cauchy net and T is relatively open the net {x
6 T-ly6} is also a Cauchy net hence

converges to some xgX. Then Tx6 Y6 Tx y, hence the range of T is closed.

LEMMA 4. Let T be an endomorphism of a barrelled Ptk space (X,[). If its

adjoint T’ is $’-topological isomorphism, then T is surjective and open.

PROOF. Let M be a balanced, convex, w*-closed and [-equicontinuous subset of

X’. It is then both w*-compact and ’-bounded. Since T’ is ’-open, (T’)-IM B

is $’-bounded. B is also w*-closed because T’ is w*-continuous. Since (X,[I is

barrelled, B is w*-compact and this in conjunction with w*-continuity of T’implies

that T’B T’X’ n M is w*-compact, hence w*-closed. Since {X,[) is also a Ptk

space it implies that T is relatively open. Finally, completeness of a Ptk space
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and injectiveity of T’ imply that T is both closed (Lemma 3) and dense in X, hence

T is surjective.

LEMMA 5. If TCIX, T) is surjective and Y-open, then THr n {CIX,T), IA,TI).

PROOF. If Tg7 r, then with $6, A’gA and V’gN as in Remark, SA’ V’ frequent-

ly. T-IA A
1

is bounded, because T is open. Since S6T 0 in (A,T), S6TA1
_

V’

eventually and this is impossible because STA1 S6A’, hence TgHr.
THEOREM 3. If IX, Y) is a barrelled Ptk space, then TH

_
(C(X,T), {AT))

iff T is injective and TX is barrelled.

PROOF. A T-continuous injection from a Ptk space into a barrelled space is

a T-topological isomorphism, hence according to Theorem i, T. The converse

follows from Lemma 2 and Theorem i.

THEOREM 4. If {XT) is a barrelled Ptk space, then Tr
_

(C(,T), (A,T))

iff T is surjective.

PROOF. If T is surjective then, according to Proposition 2 [3, p. 299], T is

T-open hence by Lemma 5 it cannot be a rtdz.

Asume now that T is not surjective. If the range of T is not dense, then

r.according to Lemma 1 a, Tgr
Suppose that the range of T is dense in X. T

can not be T-open, because it would have to have a closed range (Lemma 3). Accord-

ing to Lemma 4, its adjoint T’ (which is injective) can not be $’-relatively open,

(T’)-ly} 0 in 6’hence there is a net {y} T’X’ 0 and the net {x,Y
The conclusion then follows just as in the last part of Theorem 2.

Since Fr$chet space is both barrelled and Ptk space, Theorems 3 and 4 are

valid for them.

COROLLARY 2. If {X,I) is a Frchet space then

a) T is injective and range closed iff Tg (C{X,T) (A,T)

b) T is surjective iff Tgr
_

(C(X,I), (A,II).

PROOF. Part a) follows from the fact that a closed subspace of an Frchet

space is a Fr$chet space, hence barrelled and from Theorem 3. Part b) follows

from Theorem 4 and the foregoing remark.

Properties of a linear operator on an LCS are very intimately related to those
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of its adjoint operator. For example: "T is w-open iff T’ is w*-range closed".

The next theorem relates properties of T with those of T’ in terms of tdz.

In this regard it is important to note that an operator topology {A,TI remains

unaltered if either A is replaced with its balanced convex and closed envelope

and/or N is replaced with a fundamental system of balanced, convex and closed

neighborhoods. In the sequel it is assumed that each AsA and VsN is balanced con-

vex and closed.

THEOREM 5. Let A be a family of bounded subsets of X and TsC{X,w} such that

Then the following are equivalent:

a) TZI(Zr)
_

(C(X,w}, %(A,T)).

b) T’glr{l/}
_

(C(X’,w*), T(E,TA)) where E is the set of all T equi-

continuous subsets of X’.

PROOF. The condition TA _c A makes T’ TA-continuous. This together with the

TA-boundedness of each EE implies that T(E,TA) is a vector topology. The state-

ment then follows from the following facts:

TA _c B iff T’B A if A,B are convex, balanced and closed;

0 in {A,TA)7S 0 in (A,T) iff S
(ST)’ T’S

In what will follow B’ and F’ will denote the sets of all w*-bounded and finite

subsets of X’ respectively.

There is a number of fanilies of bounded subsets (equivalently w-bounded) of X

which satisfy the condition of Theorem 5 for all TgC{X,w). Consider the most

extreme ones: F--the family of all finite--and B--all bounded--subsets of X. Note

that F generates the w*-topology and B the B’-topology in X’. In CIX, wl, since

F c__ B, T{F,w) < T{B,wl. The effect of change of operator topology on the results

of the preceding theorem are given in the following corollary

COROLLARY 3. If TgC(X,wl, the following statements are valid:

a) Tzl(z r) (C(X,w), (F,w)) iff Tzr(zl)
_

(C(X’ (F’,w*)W

b) TZI(Z r) (C(X,w), ?(B,w)) iff Tzr(zl) c__ (C(X,w*),

c) Tzl(z r)
_

(C(X,w), %(B,T)) iff Tkzr(zl)
_

(C(X’,w*), T(E,B’)).
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The next theorem characterizes w-isomorphisms and their adjoint in terms of tdz.

THEOREM 6. If TeC{X,wl, the following are equivalent:

a) T is a w-topological isomorphism.

b) T’ is surjective.

c) TeH1 (C(X,w) Z(B,wl)

d) T’gHr (C(X’ w*) %(F’

PROOF. The equivalence of a) and b) is a standard result and could be found

for example in [2, Proposition 8.6.3, p. 517]. The equivalence of a) and c) follows

from Corollary i while that one of c) and d) from Corollary 3b.

The preceeding results can be strengthened in the case of Frchet space due to

the fact that: "T is an isomorphism iff it is a w-isomorphism" [2, Theorem 8.6.13,

p. 521 ].

COROLLARY 4. If (X,T) is a Frchet space, the following are equivalent:

a) TEZ1 (C(X,T), %(B,w) ).

b) TgZ/= (C(X,T), "7(B,T) ).

Zrc) T’g (C(X’,w*), (F’,6’)).

d) T’Zr (C(X’ ,w*), ?’(B ,6 )).

PROOF. The equivalence of a) and b) is by Theorem 6, the foregoing remark

and Theorem i. c) is equivalent to d) because in the dual of a barrelled space

E B’ F’. Finally, b) is equivalent to d) by Corollary 3c.

The next theorem generalizes the following result of Rickart [4, p. 297]

"A singular endomorphism of a Banach space is a topological divisor of zero."

THEOREM 7. Every singular endomorphism of a barrelled Ptk space is a topolo-

gical divisor of zero.

PROOF T is singular iff T is either not injective in which case Tg zl
or T is not surjective. In the latter case, if the range of T is not dense,

TgNr c__ Zr. If however, the range of T is dense then according to Theorem 4, TgZ r.
3 CONCLUS ION.

Preliminary results, obtained in this paper, indicate that the concept of tdz

can successfully be used to classify endomorphisms of LCS which are of a more gen-
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eral nature than is Banach space.

A decomposition of CIX,T) into nine disjoint subsets such as in Theorem 3.14,

[i], has not been attempted. The conjecture is that it is possible.

A difficult question seems to be the one in regard to a topological character-

ization of the set of regular endomorphisms and others. An answer to it seems to

be directly related to the question:

Under which conditions is C(X, TI a topological algebra with a continuous in-

verse?
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