ON SEPARABLE ABELIAN EXTENSIONS OF RINGS

GEORGE SZETO

Mathematics Department Bradley University Peoria, Illinois 61625 U.S.A. (Received February 9, 1982)

ABSTRACT. Let R be a ring with 1, G ($= \langle p_1 \rangle \times \dots \times \langle p_m \rangle$) a finite abelian automorphism group of R of order n where $\langle p_1 \rangle$ is cyclic of order n_1 for some integers n, n_1 , and m, and C the center of R whose automorphism group induced by G is isomorphic with G. Then an abelian extension $R[x_1,\dots,x_m]$ is defined as a generalization of cyclic extensions of rings, and $R[x_1,\dots,x_m]$ is an Azumaya algebra over K (= $C^G = \{c \text{ in } C / (c) \}_i = c \text{ for each } p_i \text{ in } G\}$) such that $R[x_1,\dots,x_m] \cong R^G \mathfrak{Q}_K C[x_1,\dots,x_m]$ if and only if C is Galois over K with Galois group G (the Kanzaki hypothesis).

KEY WORDS AND PHRASES. Abelian ring extensions, separable algebras, Azumaya algebras, Galois extensions.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 16A16, 13A20, 13B05.

1. <u>INTRODUCTION</u>.

Cyclic extensions of rings have been intensively investigated by Nagahara and Kishimoto [1], Parimula and Sridharan [2], the present author [3,4,5], and others. In [3], a separable cyclic extension R[x] with respect to a cyclic automorphism group $\langle \boldsymbol{\rho} \rangle$ of R of order n for some integer n over a noncommutative ring R was studied. It was shown ([3], Theorem 3.3) that if R is Galois over $R^{\langle \boldsymbol{\rho} \rangle}$ (= {r in R / (r) \boldsymbol{g} = r}) with Galois group $\langle \boldsymbol{\rho} \rangle$ and if R^{($\boldsymbol{\rho} \rangle$} is contained in the center C of R, then R[x] is an Azumaya algebra over R^{$\langle \boldsymbol{\rho} \rangle$}, where xⁿ (= b for some b in R) and n are units in R^{$\langle \boldsymbol{\rho} \rangle$}. Let G be an abelian automorphism group of R of order n such that G = $\langle \boldsymbol{\rho}_1 \rangle \times \ldots \times \langle \boldsymbol{\rho}_m \rangle$ where $\langle P_i \rangle$ is a cyclic subgroup of order n_i for some integers n, m, and n_i . Noting that (C) $\boldsymbol{\beta}_i = C$ for each $\boldsymbol{\beta}_i$, we shall study an abelian extension $R[x_1, \dots, x_m]$ with respect to G, where $rx_i = x_i(r\boldsymbol{\rho}_i)$ for each r in R, $x_i^{n_i} = x_i(r\boldsymbol{\rho}_i)$ b_i which is a unit in C^G, $x_i x_j = x_j x_i$ for all i and j, and the set $\{x_1^{k_1}, \dots, x_m^{k_m}\}$ $/ 0 \leq k_i \leq n_i$ is a basis over R. A ring R is called to satisfy the Kanzaki hypothesis ([6], P. 110) if R is Azumaya over C with a finite automorphism group G and C is Galois over K (= C^G) with Galois group induced by and isomorphic with G. DeMeyer [7] has shown that $R \cong R^{G} \mathfrak{Q}_{V} C$ under the Kanzaki hypothesis for R. The present paper will generalize the Parimula-Sridharan theorem from cyclic extensions ([2], Proposition 1.1, [3], Theorem 3.3) to abelian extensions $R[x_1, \ldots, x_m]$ with respect to an abelian automorphism group G (= <?,>x $\ldots \times \langle \mathcal{G}_m \rangle$) of R. Let G restricted to C be isomorphic with G. Then we shall show that C is Galois over K (= C^G) if and only if R[x,...,x,] is an Azumaya algebra over K such that $R[x_1, \dots, x_m] \cong R^G \otimes_K C[x_1, \dots, x_m]$ where R^G is an Azumaya K-algebra. Thus, a structure of $R[x_1, \dots, x_m]$ is obtained. Moreover, a structure of $C[x_1, \dots, x_m]$ is also obtained when each direct summand of G is a G-subgroup (see definition below).

2. PRELIMINARIES.

Throughout, let R be a ring with 1, C the center of R, G (= $\langle \mathbf{f}_1 \rangle \times \cdots \times \langle \mathbf{f}_m \rangle$) an abelian automorphism group of R of order n where \mathbf{f}_i is cyclic of order \mathbf{n}_1 for some integers n, \mathbf{n}_1 , and m. Then $R[\mathbf{x}_1, \cdots, \mathbf{x}_m]$ is the abelian extension of R with respect to G as defined in Section 1. We denote C^G by K, and assume that the automorphism group of C is isomorphic with G. The Azumaya algebra R is called to satisfy the <u>Kanzaki hypothesis</u> ([6], P. 110) if C is Galois over K with Galois group induced by and isomorphic with G. For separable extensions, Azumaya algebras, and Galois extensions, see [3], [4], and [5].

3. ABELIAN EXTENSIONS.

Keeping the notations of Sections 1 and 2, we shall show the Parimula-Sridharan theorem ([2], Proposition 1.1, [3], Theorem 3.3) and two structural theorems for abelian extensions $R[x_1, \dots, x_m]$. We begin with a proposition on separable abelian extensions. PROPOSITION 3.1. Let G (= $\langle \boldsymbol{\beta}_1 \rangle \times \cdots \times \langle \boldsymbol{\beta}_m \rangle$) be an abelian automorphism group of R of order n. If n and $x_i^{n_i}$ (= b_i) are units in C^G for each i, then $R[x_1, \dots, x_m]$ is a separable extension of R.

PROOF. Since n_i divides n, n_i is a unit in C^G. Hence the cyclic extension $R[x_1]$ with respect to $\langle P_1 \rangle$ is a separable extension over R ([3], Lemma 3.1). Now $\langle P_2 \rangle$ is extended to an automorphism group of $R[x_1]$ by $(x_1)P_2 = x_1$, so $(R[x_1])[x_2]$ is a separable extension over $R[x_1]$ by a similar reason. Thus $R[x_1,x_2]$ (= $(R[x_1])[x_2]$) is a separable extension over R by the transitivity of separable extensions. By repeating the above argument (m-2) times, $R[x_1,...,x_m]$ is a separable extension over R.

We now show the Parimula-Sridharan theorem for $R[x_1, \ldots, x_m]$.

THEOREM 3.2. By keeping the notations of Proposition 3.1, if R satisfies the Kanzaki hypothesis, then $R[x_1, \ldots, x_m]$ is an Azumaya K-algebra.

PROOF. By Proposition 3.1, $R[x_1, \ldots, x_m]$ is a separable extension over R. By the Kanzaki hypothesis for R, R is separable over C and C is Galois over K, so $R[x_1, \ldots, x_m]$ is a separable extension over K by the transitivity of separable extensions. So, it suffices to show that the center of $R[x_1, \ldots, x_m]$ is K. It is easy to see that K is contained in the center. Since $\{x_1^{k_1} \ldots x_m^{k_m} / 0 \le k_1 \le n_1\}$ is a basis of $R[x_1, \ldots, x_m]$ over R, we can take f in the center of $R[x_1, \ldots, x_m]$ such that $f = a_0 + x_1^{k_1} \ldots x_m^{m}$. a where a_0 and a are in R, and $0 \le k_1 \le n_1$. Then, rf = fr for each r in R. This implies that $ra_0 = a_0 r$ and $ar = (r) \beta_1^{k_1} \ldots \beta_m^{k_m}$. Hence a_0 is in C, and the second equation implies that $a(r-(r) \beta_1^{k_1} \ldots \beta_m^{k_m}) = 0$ for each r in C. Thus a is in the annihilator ideal I of $\{r-(r)\beta_1^{k_1} \ldots \beta_m^{k_m} / r \text{ in C}\}$ of R. Since R is Azumaya over C, I = I_0R where I_0 is the annihilator ideal of $\{r-(r)\beta_1^{k_1} \ldots \beta_m^{k_m} / r$ r in C $\}$ of C. I_0 = {0} ([7], Proposition 1.2) because C is Galois over K with Galois group induced by and isomorphic with G. Thus I = {0}, and so a = 0. Therefore, $f = a_0$ in C. Also, $x_1f = fx_1$ for each i, so $a_0 = (a_0)\beta_1$ for each i. Thus a_0 is in K. This completes the proof.

Next is a structural theorem for $R[x_1, \dots, x_m]$ under the Kanzaki hypothesis.

THEOREM 3.3. If R satisfies the Kanzaki hypothesis, then $R[x_1, \ldots, x_m] \cong R^G \otimes_K C[x_1, \ldots, x_m]$ as Azumaya K-algebras.

PROOF. By Proposition 3.1, $C[x_1, \ldots, x_m]$ is an Azumaya algebra over K. Then, similar to the arguments used in the proof of Theorem 3.2, we shall show that the commutant of $C[x_1, \ldots, x_m]$ in $R[x_1, \ldots, x_m]$ is R^G . Clearly, R^G is contained in the commutant. Now, let $f = a_0 + x_1^{k_1} \cdots x_m^{m_k}$ a be an element in the commutant for some a_0 and a in R and $0 \le k_1 \le n_1$. Then cf = fc for each c in C. This implies that a = 0. Also, $x_1 f = fx_1$ for each i, so a_0 is in R^G . Thus $f (= a_0)$ is in R^G . Noting that $C[x_1, \ldots, x_m]$ and $R[x_1, \ldots, x_m]$ are Azumaya algebras over K, we have that $R[x_1, \ldots, x_m] \cong R^G \mathfrak{O}_K C[x_1, \ldots, x_m]$ by the well known commutant theorem for Azumaya algebras ([7], Theorem 4.3, P. 57).

COROLLARY 3.4. If R satisfies the Kanzaki hypothesis, then R^G is an Azumaya algebra over K.

PROOF. This is a consequence of Theorem 3.3 and the commutant theorem for Azumaya algebras.

We are going to show a converse of Theorem 3.3.

THEOREM 3.5. If $R[x_1, \ldots, x_m]$ is an Azumaya algebra over K such that $R[x_1, \ldots, x_m] \cong R^G \mathfrak{D}_K C[x_1, \ldots, x_m]$ where R^G is an Azumaya K-algebra, then C is Galois over K with Galois group induced and isomorphic with G.

PROOF. By the commutant theorem for Azumaya algebras, since $R[x_1, \ldots, x_m]$ and R^G are Azumaya K-algebras, so is $C[x_1, \ldots, x_m]$. Then, we claim that C is Galois over K with Galois group G. Suppose not. There is a non-identity g in G such that $\{c-(c)g / c \text{ in } C\}$ is not C ([7], Proposition 1.2). Let g = $g_1^{k_1} \cdots g_m^{k_m}$ for some k_i , $0 \le k_i \le n_i$. Since I generated by (c-(c)g) for c in C is a G-ideal of C (that is, (I)G = I), we have an Azumaya algebra $(C/I)[x_1, \ldots, x_m]$ over K/(K \cap I). On the other hand, one can show that $(x_1^{k_1} \cdots x_m^{k_m})$ is in the center of $(C/I)[x_1, \ldots, x_m]$. This is a contradition. Thus C is Galois over K with Galois group G.

Let S be a ring Galois extension over a subring T with a finite Galois group G. A normal subgroup H of G is called a <u>G-subgroup</u> if S is Galois over S^{H} with Galois group H and S^{H} is Galois over T with Galois group G/H. Keep-

ing the notations of Theorem 3.5, we give a structural theorem for $C[x_1, \ldots, x_n]$

We denote the center of $C[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m]$ by C_i for each i. $(G/(9_i))$. Let each direct summand of G be a G-subgroup, we have:

THEOREM 3.6. If C is Galois over K with Galois group G, then the abelian extension $C[x_1, \dots, x_m] \stackrel{\sim}{=} C_1[x_1] \otimes_K \dots \otimes_K C_m'[x_m]$ as Azumaya K-algebras.

PROOF. Extending β_i from C to $C[x_1, \ldots, x_m]$ by $(x_j)\beta_i = x_j$ for each i and j, we claim that $C[x_1, \ldots, x_m] \cong (C[x_1, \ldots, x_{m-1}])^{m} \otimes_K C_m'[x_m]$. In fact, since C is Galois over K, C (for $G/\langle g_m \rangle \cong \langle f_p \rangle \times \ldots \times \langle f_{m-1} \rangle$ is a G-subgroup of G by hypothesis). Now, the center of $C[x_1, \ldots, x_{m-1}]$ is C ($G/\langle f_m \rangle$, so $C[x_1, \ldots, x_{m-1}]$ satisfies the Kanzaki hypothesis; that is, $C[x_1, \ldots, x_{m-1}]$ has an automorphism group $\langle f_m \rangle$ such that its center C ($G/\langle f_m \rangle$ is Galois over (C ($G/\langle f_m \rangle)$) $\langle f_m \rangle$ (= K) with Galois group induced by and isomorphic with $\langle f_m \rangle$. But $C[x_1, \ldots, x_{m-1}] \cong (C[x_1, \ldots, x_{m-1}])[x_m]$, so $C[x_1, \ldots, x_m] \cong (C[x_1, \ldots, x_{m-1}])^{\langle f_m \rangle} \otimes_K C_m'[x_m]$ by Theorem 3.3. Next, considering $(C[x_1, \ldots, x_{m-1}])^{\langle f_m \rangle}$, we have that $(C[x_1, \ldots, x_{m-2}])^{\langle f_m \rangle} \cong (C^{\langle f_m \rangle}[x_1, \ldots, x_{m-2}])[x_{m-1}]$ such that the center of C Galois over K with Galois group $\langle f_{m-1} \rangle$. Since $\langle f_{m-1} \rangle$ is an automorphism group of $C^{\langle f_m \rangle}[x_1, \ldots, x_{m-2}]$, $C^{\langle f_m \rangle}[x_1, \ldots, x_{m-2}]$ satisfies the Kanzaki hypothesis with a center which is Galois over K with Galois group $\langle f_{m-1} \rangle$. Hence $C^{\langle f_m \rangle}[x_1, \ldots, x_{m-1}] \cong C^{\langle f_m \rangle \times \langle f_m - 1}[x_1, \ldots, x_{m-2}] \otimes_K C_{m-1}^*[x_{m-1}]$. The above arguments can be repeated for (m-2) more times. Thus the proof is completed.

As immediate consequences of Theorem 3.5 and Theorem 3.6, we have the following:

COROLLARY 3.7. If R satisfies the Kanzaki hypothesis such that each direct summand of G is a G-subgroup, then $R[x_1, \ldots, x_m] \cong R^G \mathfrak{Q}_K C[x_1] \mathfrak{Q}_K \ldots C[x_m]$.

COROLLARY 3.8. If R satisfies the Kanzaki hypothesis such that the center C of R has no idempotents but O and 1, then $R[x_1, \dots, x_m] \cong R^G \mathfrak{B}_K C_i[x_1] \mathfrak{B}_K \dots \mathfrak{B}_K C_m[x_m]$.

PROOF. Since C is Galois over K with no idempotents but O and 1, each direct summand of G is indeed a G-subgroup ([7], Theorem 1.1, P. 80, or [8]).

REFERENCES

- NAGAHARA, T. and KISHIMOTO, K. On Free Cyclic Extensions of Rings, <u>Math.</u> J. Okayama Univ. (1978), 1-25.
- PARIMULA, S. and SRIDHARAN, R. Projective Modules over Quaternion Algebras, <u>J. Pure Appl. Algebra 9</u> (1977), 181-193.
- 3. SZETO, G. On Free Ring Extensions of Degree N, <u>Internat. J. Math. and</u> <u>Math. Sci. 4</u> (1981), 703-709.
- 4. SZETO, G. On Generalized Quaternion Algebras, <u>Internat. J. Math. and</u> <u>Math. Sci. 2</u> (1980), 237-245.
- 5. SZETO, G. A Characterization of a Cyclic Galois Extension of Commutative Rings, <u>J. Pure Appl. Algebra</u> <u>16</u> (1980), 315-322.
- 6. KANZAKI, T. On Commutor Rings and Galois Theory of Separable Algebras, <u>Osaka J. Math. 1</u> (1964), 103-115.
- 7. DeMEYER, F. and INGRAHAM, E. <u>Separable Algebras over Commutative Rings</u>, Springer-Verlag-Berlin-Heidelberg-New York, 1971.
- CHASE, S., HARRISON, D. and ROSENBERG, A. Galois Theory and Galois Cohomology of Commutative Rings, <u>Mem. Amer. Math. Soc</u>. <u>52</u> (1965).