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ABSTRACT. Let R be a ring with I, G (= (1>x...Xm) a finite abelian

automorphism group of R of order n where (i2 is cyclic of order n. for some

integers n, hi, and m, and C the center of R whose automorphism group indu-

ced by G is isomorphic with G. Then an abelian extension Rtx 1,...,xm is

defined as a generalization of cyclic extensions of rings, and RXl,...,Xm
is an Azumaya algebra over K (= CG {c in C / (c)i c for each

RGKCX Xm] if and only if C is Galois over Ksuch that Rx1,...,xm I’
with Galois group G (the Kanzaki hypothesis).
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INTRODUCTION.

Cyclic extensions of rings have been intensively investigated by Naga-

hara and Kishimoto [I, Parimula and Sridharan 2], the present author

[3,4,5], and others. In [3], a separable cyclic extension Rgxl with respect

to a cyclic automorphism group ( of R of order n for some integer n over

a noncommutative ring R was studied. It was shown (3, Theorem 3.3) that

if R is Galois over R( (= {r in R / (r) r}) with Galois group and

if R is contained in the center C of R, then R[x] is an Azumaya algebra

over R where x (= b for some b in R) and n are units in R Let G be

an abelian automorphism group of R of order n such that G X "Km
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for some integers m, and n..where (i is a cyclic subgroup of order n
i

Noting that (C)i C for each fi’ we shall study an abelian extension
n.

R[Xl,...,Xm] with respect to G, where rx
i xi(ri) for each r in R, xi

k k
b. which is a unit in CG, x.x. x.x. for all i and j, and the set x ...x m

/ Oki ni is a basis over R. A ring R is called to satisfy the Kanzaki

hypothesis ([6], P. 110) if R is Azumaya over C with a finite automorphism

group G and C is Galois over K (= CG) with Galois group induced by and isomor-

phic with G. DeMeyer [7] has shown that R = RGC under the Kanzaki hypothe-

sis for R. The present paper will generalize the Parimula-Sridharan theorem

from cyclic extensions ([2], Proposition 1.1, [3], Theorem 3.3) to abelian ex-

tensions R[Xl,...,Xm] with respect to an abelian automorphism group G (=

...K(?m>) of R. Let G restricted to C be isomorphic with G. Then we shall

show that C is Galois over K (= CG) if and only if R[x 1,...,xm] is an Azumaya

algebra over K such that R[x 1,...,xm RG(R)KC[XI’’’’’Xm where RG is an Azu-

maya K-algebra. Thus, a structure of R[Xl,...,Xm] is obtained. Moreover, a

structure of C[Xl,...,Xm is also obtained when each direct summand of G is a

G-subgroup (see definition below).

2. PREL IMINAR I ES.

Throughout, let R be a ring with I, C the center of R, G (= (I>X...X
(m>) an abelian automorphism group of R of order n where i is cyclic of

order n
i for some integers n, ni, and m. Then R[x ,...,Xm is the abelian

extension of R with respect to G as defined in Section I. We denote CG by

K, and assume that the automorphism group of C is isomorphic with G. The

Azumaya algebra R is called to satisfy the Kanzaki hypothesis ([6, P. 110)

if C is Galois over K with Galois group induced by and isomorphic with G.

For separable extensions, Azumaya algebras, and Galdis extensions, see [3],

[41, and [5].

3. ABELIAN EXTENSIONS.

Keeping the notations of Sections and 2, we shal show the Parimula-

Sridharan theorem ([2], Proposition 1.1, [3], Theorem 3.3) and two structural

theorems for abelian extensions R[x1,...,xm. We begin with a proposition

on separable abelian extensions.
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PROPOSITION 3.1. Let G (= (1>X...XKm) be an abelian automorphism

ni (- are units in CG for each i, thengroup of R of order n. If n and x
i

b
i

R[x 1,...,xm] is a separable extension of R.

is a unit in C G. Hence the cyclic ex-PROOF. Since n
i

divides n, n
i

tension R[xI] with respect to ’I is a separable extension over R ([3],

Lemma 3.1). Now 2> is extended to an automorpism group of R[x1 by

(xI)2 Xl, so (R[x1)[x2 is a separable extension over R[Xl]bY a similar

reason. Thus R[x1,x21 (= (R[x1)[x2) is a separable extension over R by

the transitivity of separable extensions. By repeating the above argument

(m-2) times, RXl,...,Xm is a separable extension over R.

We now show the Parimula-Sridharan theorem for R[Xl,...,Xm.
THEOREM 3.2. By keeping te notations of Proposition 3.1, if R satis-

fies the Kanzaki hypothesis, then R[x1,...,xm is an Azumaya K-algebra.

PROOF. By Proposition 3.1, R[x1,...,xm is a separable extension over

R. By the Kanzaki hypothesis for R, R is separable over C and C is Galois

over K, so R[Xl,...,Xml is a separable extension over K by the transitivity

of separable extensions. So, it suffices to show that the center of

R Ix 1,...,x] is K. It is e.asy to see that K is contained in the center.

Xl
km

Since { ...xm / 0ki ni is a basis of R[x1,...,.xm over R, we can
k k

m
take f in the center of R[x ,...,x such that f a +x ...x .a where a

m o m o

and a are in R, and Oki< n.. Then, rf fr for each r in R. This implies

m
that ra aor and ar (r)1 .a. Hence a is In C, and the second

k k

a(r-(r)11...mm)_ 0 for each r in C. Thus a is inequation implies that
k k

r-(r)11...mm / r in C of R. Since R is Ann-the annihilator ideal I of
k k

is the annihilator ideal of --r-(r) .mmmaya over C, I IoR where I /

r in C} of C. I {0 ([7], Proposition 1.2) because C is Galois over K

with Galols group induced by and isomorphic with G. Thus I {0}, and so

in C. Also, x.f fx. for each i, so a (ao) .a 0. Therefore, f a
1 o 1

for each i. Thus a is in K. This completes the proof.
o

Next is a structural theorem for R[Xl,...,xm] under the Kanzaki hypo-

thesis.
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THEOREM 3-3. If R satisfies the Kanzaki hypothesis, then R[x 1,...,xm

RGC[Xl,...,Xml as Azumaya K-algebras.

PROOF. By Proposition 3. I, C[x1,...,xm is an Azumaya algebra over K.

Then, similar to the arguments used in the proof of Theorem 3.2, we shall

RGshow that the commutant of C[x 1,...,xm] in R[x 1,...,xm] is RG Clearly,
k k

m
is contained in the commutant. Now, let f ao+X ...Xm .a be an element in

the commutant for some a and a in R and Okini. Then c f fc for each c

in C. This implies that a O. Also, xif fx
i

for each i, so a is in RG.
Thus f (= ao) is in RG. Noting that C[xl,...,Xm and R[xl,...,Xm are Azu-

maya algebras over K, we have that R[x1,...,xm RGKC[X1,...,xm by the

well known commutant theorem for Azumaya algebras ([7, Theorem 4.3, P. 57).

COROLLARY 3.4. If R satisfies the Kanzaki hypothesis, then RG is an

Azumaya algebra over K.

PROOF. This is a consequence of Theorem 3.3 and the commutant theorem

for Azumaya algebras.

We are going to show a converse of Theorem 3.3.

THEOREM 3.5. If R[x1,...,xm is an Azumaya algebra over K such that

N RGKC RGRx1,...,xm Ix|,.. ,Xm where is an Azumaya K-algebra, the C is

Galois over K with Galois group induced and isomorphic with G.

PROOF. By the commutant theorem for Azumaya algebras, since R[x1,...,Xm]
and RG are Azumaya K-algebras, so is C[Xl,...,Xm. Then, we claim that C is

Galois over K with Galois group G. Suppose not. There is a non-identity g

in G such that {c-(c)g / c in C is not C ([7], Proposition 1.2). Let g
k k

I "’’mm for some ki, Oki<ni. Since I generated by (c-(c)g) for c in C

is a G-ideal of C (that is, (I)G I), we have an Azumaya algebra

(C/l)[Xk1’’’’Xm over K/(KI). On the other hand, one can show that

(x11"’’Xmm) is in the center of (C/I)[xl,...,Xm. This is a eontradition.

Thus C is Galois over K with Galois group G.

Let S be a ring Galois extension over a subring T with a finite Galois

group G. A normal subgroup H of G is called a G-subgroup if S is Galois over

SH with Galois group H and SH is Galois over T with Galois group G/H. Keep-



ON SEPARABLE ABELIAN EXTENSIONS OF RINGS 783

ing the notations of Theorem 3.5, we give a structural theorem for C[xI,...,x
for each iWe denote the center of C[x 1,...,xi_ 1,xi+1,...,xm] by C

i
(/i)

C Let each direct summand of G be a G-subgroup, weClearly, C
l

have:

THEOREM 3.6. It" C is Galois over K with Galois group G, then the abelian

extension C Ix 1,...,xml CxIK...KC[Xm as Azumaya K-algebras.

PROOF. Extending i from C to C[Xl,...,Xm] by (xj)i xj for each i

and j, we claim that CCXl,...,.Xm (C[x )fmKc,[Xm. In fact,
(G/4mj

I’ ’Xm-1 m

since C is Galois over K, C is Galois over K with Galois group(m>

(for G/4 (...(m_1> is’s G-subgroup of G by hypothesis). Now, the

center of Cx1,...,xm_1 is C so Ctx 1,...,xm_1] satisfies the Kanzaki

hypothesis; that is, CXl,...,Xm_1 has sn automorphism group fm such that

(G/4# (G/ m>) )m>
its center C is Galois over (C (= K) with Galois group

induced an isomorphic wit <t. ut Cx,...,Xm (C[x,...,Xm_)tXm,
so C[x ,... ,xm] (C[x ,. ,Xm_1]) by Theorem 3.3. Next, consi-

x 4m>, we hav

m> which is...,Xm_2])[Xm_1 such that the cente- of C [x1,...,Xm_2 C’m_1
Galois over K with Galois group m_1. Since m_1> is an automorphism group

of C Ix 1,...,xm_2] C Ix 1,...,xm_2] satisfies the Kanzaki hypothesis

with a center which is Galois over K with Galois group 4m-1>" Hence

m>4m-1>[Xl, ,Xm_2]KC_1[Xm_1] The above argu-C [Xl,...,Xm_1] C

ments can be repeated for (m-2) more times. Thus the proof is completed.

As immediate consequences of Theorem 3.5 and Theorem 3.6, we have the

following:

COROLLARY 3.7. If R satisfies the Kanzaki hypothesis such that each di-

RGK 11% mrect summand of G is a G-subgroup, then R[x 1,...,xm] C Ix ...C x

COROLLARY 3.8. If R satisfies the Kanzaki hypothesis such that the

center C of R has no idompotents but 0 and I, then R[x 1,...,xm
RGKC [x11 K’" "KCzc Xm]"

PROOF. Since C is Galois ever K with no idempotents but 0 and I, each

direct summand of G is indeed a G-subgroup ([7], Theorem 1.1, P. 80, or [8).
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