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ABSTRACT. Let R be a ring with 1, G (= <j’1>x...x(fm)) a finite abelian
automorphism group of R of order n where <?i7 is cyclic of order ng for some
integers n, n;, and m, and C the center of R whose automorphism group indu-
ced by G is isomorphic with G. Then an abelian extension R[x1,...,xm] is
defined as a generalization of cyclic extensions of rings, and R(xl,...,xm]
is an Azumaya algebra over K (= ¢t = {cinC / (c)fi = ¢ for each f& in G})
such that R[XI""’xm] £ RGQKC[X1,...,xm] if and only if C is Galois over K

with Galois group G (the Kanzaki hypothesis).
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1. INTRODUCTION.

Cyclic extensions of rings have been intensively investigated by Naga-
hara and Kishimoto [1], Parimula and Sridharan [2], the present author
{3,4,51, and others. 1In [3], a separable cyclic extension R[x] with respect
to a cyclic automorphism group (f} of R of order n for some integer n over

a noncommutative ring R was studied. It was shown ([3}, Theorem 3.3) that

>

if R is Galois over R

(%>

if R is contained in the center C of R, then R[x] is an Azumaya algebra
P>

3 3 <
over R f), where x" (= b for some b in R) and n are units in R . Let G be

{r in R / (r)§ = r}) with Galois group <f> and

an abelian automorphism group of R of order n such that G = <r1>x...x<?m>
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where (fi) is a cyclic subgroup of order ng for some integersn, m, and n;e

Noting that (C)f& = C for each f&, we shall study an abelian extension
n,
. i
x;(rP,) for each r in R, ii = .

; : 1 m
= xjxi for all i and j, and the set {XI oo Xy

R[x1,...,xmg with respect to G, where Xy

bi which is a unit in CG, x.lxj
/ Ofki< ni} is a basis over R. A ring R is called to satisfy the Kanzaki
hypothesis (L6), P. 110) if R is Azumaya over C with a finite automorphism
group G and C is Galois over K (= CG) with Galois group induced by and isomor-
phic with G. DeMeyer [ 71 has shown that R ¥ RGQKC under the Kanzaki hypothe-
sis for R. The present paper will generalize the Parimula-Sridharan theorem
from cyclic extensions ([2], Proposition 1.1, [3], Theorem 3.3) to abelian ex-
tensions R[x1,...,xm] with respect to an abelian automorphism group G (= <?fx
...x(fm>) of R« Let G restricted to C be isomorphic with G. Then we shall
show that C is Galois over K (= C®) if and only if R[Xysee,%,] 15 an Azumaya
algebra over K such that R[XI""’Xm] % RGQKC[Xj,...,xﬁ] where R® is an Azu-
maya K-algebra. Thus, a structure of R(xl,...,xm] is obtained. Moreover, a
structure of C[XI,...,Xm] is also obtained when each direct summand of G is a
G-subgroup (see definition below).
2. PRELIMINARIES.

Throughout, let R be a r;ng with 1, C the center of R, G (= (?1>x...x
‘?m>) an abelian automorphism group of R of order n where ?i is cyclic of
order ny for some integems n, ny, and m. Then RCXI,...,xﬁ] is the abelian

G by

extension of R with respect to G as defined in Section 1., We denote C
K, and assume that the automorphism group of C is isomorphic with G. The

Azumaya algebra R is called to satisfy the Kanzaki hypothesis ([6]}, P. 110)

if C is Galois over K with Galois group induced by and isomorphic with G.
For separable extensions, Azumaya algebras, and Galois extensions, see [3],
[4]3, and (5].

3. ABELIAN EXTENSIONS.

Keeping the notations of Sections 1 and 2, we shall show the Parimula-

Sridharan theorem ((2], Proposition 1.1, [3], Theorem 3.3) and two structural

theorems for abelian extensions R[x1,...,xm]. We begin with a proposition

on separable abelian extensions.
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PROPOSITION 3.1. Let G (= (?1)x...x(fm)) be an abelian automorphism
group of R of order n. If n and x:i (= bi) are units in CG for each i, then
R[xi,...,xm] is a separable extension of R.

PROOF, Since ny divides n, ng is a unit in CG. Hence the cyclic ex-
tension R[x1] with respect to <91> is a separable extension over R ([3],
Lemma 3.1). Now (f2> is extended to an automorphism group of R£x1j by
(x1)f2 = Xy, SO (R[x'j)[xzj is a separable extension over R[x,]by a similar
reason, Thus R[x,,xaj (= (R[x1])[x23) is a separable extension over R by
the transitivity of separable extensions. By repeating the above argument
(m=2) times, R[x1,...,xm] is a separable extension over R.

We now show the Parimula-Sridharan theorem for R[xl,...,xmj.

THEOREM 3.2, By keeping the notations of Proposition 3.1, if R satis-
fies the Kanzaki hypothesis, then R[x1,...,xm] is an Azumaya K-algebra.

PROOF. By Proposition 3.1, R(XI""’xmj is a separable extension over
R. By the Kanzaki hypothesis for R, R is separable over C and C is Galois
over K, so R[Xl""’xm] is a separable extension over K by the transitivity
of separable extensions. So, it suffices to show that the center of
R[x‘,...,x ] is i. It is easy to see that K is contained in the center,

Since {XII...Xmm / O$lﬁf<rﬁ} is a basis of R[x1,...,xm] over R, we can

k
take f in the center of R[XI""’Xm] such that f = a +x, ...xmm.a where a

o
and a are in R, and 0§ ki( n.. Then, rf = fr for each r in R. This implies
that ra = a r and ar = (r)fil...?hm-a. Hence a  is in C, and the second
k
equation implies that a(r-(r)?11...fmm) = 0 for each r in C., Thus a is in
the annihilator ideal I of {r-(r)?11...9mm / r in C} of R. Since R is Azu-
_ : s . 1 n

maya over C, I = I R where I is the annihilator ideal of {r-(r))’1 ,,,fm /
rin c}of c. I_ = {0} ([7], Proposition 1.2) because C is Galois over K
with Galois group induced by and isomorphic with G. Thus I = {O}, and so

= (ao)fa

a = 0, Therefore, f = a, in C. Also, Xif = fxi for each i, so a,
for each i. Thus a, is in K. This completes the proof.
Next is a structural theorem for R[x1,...,xm] under the Kanzaki hypo-

thesis.
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THEOREM 3.3. If R satisfies the Kanzaki hypothesis, then R[x',...,xm']
z RGQKC[xi,...,xm? as Azumaya K-algebras.

PROOF. By Proposition 3.1, C[x1,...,xm1 is an Azumaya algebra over K.
Then, similar to the arguments used in the proof of Theorem 3.2, we shall
show that the commutant of CIXy,...,X,] in R[x‘,.}.{.,xm‘j is R®. Clearly, RC
is contained in the commutant. Now, let f = agtx, ...xmm-a be an element in
the commutant for some a, and a in R and 05121<‘Hg Then cf = fc for each ¢

in C. This implies that a = O. Also, xif = fx., for each i, so a, is in RG.

i
Thus f (= ao) is in RG. Noting that C(x',...,xm] and R[x’,...,xm] are Azu-
maya algebras over K, we have that R[x‘,...,xng e RGQKCEXI,...,xm] ty the
well known commutant theorem for Azumaya algebras ({73}, Theorem 4.3, P. 57).

COROLLARY 3.4, If R satisfies the Kanzaki hypothesis, then RG is an
Azumaya algebra over K.

PROOF. This is a consequence of Theorem 3,3 and the commutant theorem
for Azumaya algebras.

We are going to show a converse of Theorem 3,3,

THEOREM 3.5. If R[xl,...,xmj is an Azumaya algebra over K such that
R[XI""’xml e RGQKC[X',...,ij where RC is an Azumaya K-algebra, then C is
Galois over K with Galois group induced and isomorphic with G,

PROOF. By the commutant theorem for Azumaya algebras, since R(x1,...,xmj
and RG are Azumaya K-algebras, so is C(x‘,...,xm]. Then, we claim that C is
Galois over K with Galois group G. Suppose not, There is a non-identity g

in G such that {c-(c)g / ¢ in C} is not C ([73, Proposition 1.2). Let g =
k k
1
f| ---9mm for some k, Oslﬁf<ni° Since I generated by (c-(c)g) for c in C

is a G-ideal of C (that is, (I)G = I), we have an Azumaya algebra
(Cﬁl)(x1k...g%gover K/(KfVI). On the other hand, one can show that

(X1 ...xmm) is in the center of (C/I){xyy¢e0,%,). This is a contradition,
Thus C is Galois over K with Galois group G.

Let S be a ring Galois extension over a subring T with a finite Galois

group G. A normal subgroup H of G is called a G-subgroup if S is Galois over

SH with Galois group H and sH is Galois over T with Galois group G/H. Keep-
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ing the notations of Theorem 3.5, we give a structural theorem for C[X1’°-'»X&L

!
We denote the center of C[x‘,...,xi_1,xi+1,...,xm] by Ci for each i.

(G/¢g P

Clearly, Ci =C . Let each direct summand of G be a G-subgroup, we
have:
THEOREM 3.6. If C is Galois over K with Galois group G, then the abelian
. ~
extension C[x‘,...,xm] ~ Ci(x1]QK...QKCé[xm1 as Azumaya K-algebras.
PROOF. Extending Pi from C to C[x1,...,xmp by (xj)j’i = xj for each i

. . ~ m
and j, we claim that Clx;,...,x 3 = (C[x1,...,xm_1]) QKCAIXAJ. In fact,

(G/¢pp>)
since C is Galois over K, C is Galois over K with Galois group(fm>

ne

(for G/¢¢p (f‘)x...x(fm_P (éj';ls-subgroup of G by hypothesis). Now, the
<

center of C[xl,...,xm_1] is C , SO C[x1,...,xm_1] satisfies the Kanzaki

hypothesis; that is, C[x1,...,xm_1] has an automorphism group <fm> such that

(G/¢f (©/efu>) Fu>

its center C is Galois over (C = K) with Galois group

induced by and isomorphic with <?m>. But CLXy,eee,X] E (] cIPPPRE N M £ s P

~ 3 , .
1,...,xm] = (C[x1,}..,xm_1]) ﬁKcm[xﬁl by Theorem 3.3, Next% consi-
4 %4 P> 3 14
dering (C[x1,...,xm_1]) M we have that (C(xl,...,xm_ij) - B (i [x‘,

so C[x

x_ ] h that th t £ > ' hich i

...,xm_a]) x,_q3 suc at ihe center of C [Xl"‘°’xm- ] = CJ_, which is

Galois over K with Galois group <fh_17. Since <ﬂm-1> is an automorphism group
S <S> : : ,

of C (x‘,...,xm_al, C [x1,...,xm_2] satisfies the Kanzaki hypothesis

with a center which is Galois over K with Galois group <fh_1>. Hence

fp> Bp>X<fn_1?
c " (X seeesx, 1 % C n n

' -
[x1,...,xm_z]@KCm_1[xm_‘]. The above argu
ments can be repeated for (m-2) more times., Thus the proof is completed.

As immediate consequences of Theorem 3,5 and Theorem 3.6, we have the
following:

COROLLARY 3.7. If R satisfies the Kanzaki hypothesis such that each di-

t - LN ) g G ! LN ) ! .

rect summand of G is a G-subgroup, then R[x1, X R QKCILX{)QK Cm[XA]

COROLLARY 3.8, If R satisfies the Kanzaki hypothesis such that the
center C of R has no idempotents but O and 1, then RIX,e0e,%,] 4

m

G !
R QKC<| [X1] QKO . .QKCY;I[ Xm] .

PROOF. Since C is Galois cver K wilh no idempotents but O and 1, each

direct summand of G is indeed a G-subgroup ([7), Theorem 1.1, P. 80, or [8)).
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