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ABSTRACT. By using Plya’s theorem of enumeration and de Bruijn’s generalization of

Plya’s theorem, we obtain the numbers of various weak equivalence classes of func-

tions in RD relative to permu.tation groups G and H where R
D

is the set of all func-

tions from a finite set D to a finite set R, G acts on D and H acts on R. We present

an algorithm for obtaining the equivalence classes of functions counted in de BruiJn’s

theorem, i.e., to determine which functions belong to the same equivalence class. We

also use our algorithm to construct the family of non-isomorphic fm-graphs relative

to a given group.

KEY WORDS AND PHRASES. Enumerations, equivalence classes of functions on finite sets,

algorithm, fm-graphs.
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I INTRODUCTION

Motivated by Carlitz’s work in [i] on the invariantive properties over a finite

field K, Cavior ([2],[3]) and Mullen ([4],[5],[6],[7]) studied several families of
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equivalence relations of functions from K into K. These equivalence relations can be

described in more general forms as follows: Let D-- {l,2,...,m}, R- {1,2 n},

R
D

be the set of all functions from D into R, G be a permutation group acting

on D and H be a permutation group acting on R.

(I) Let f,g c RD. f is said to be weakly equivalent to g relative to G

and H, if and only if there exist a o c G and a T H such that T-Ifo g,

i.e., T-if(d) g(d) for every d D. There are three subfamilies:

(a) When H is the identity group, f is said to be right equivalent to g

relative to G, i.e., fu g.

(b) When G is the identity group, f is said to be left equivalent to g

relative to H, i.e., T-If g.

(c) When G H and u-lfu g, f is said to be similar to g relative to

G.

R
D(II) Let f,g g f is said to be strongly equivalent to g relative to G

and H, if and only if there exist a o G and T E H such that fu g and

f--g.

Clearly, all of these relations above are equivalence relations. One of

Cavior’s and Mullen’s main results was to obtain the number of equivalence classes of

functions over K relative to symmetric groups, and to cyclic groups. Here by using

Plya’s theorem of enumeration and de BruiJn’s generalization of Plya’s theorem, we

shall point out that the numbers of various weak equivalence classes of functions in

R
D

relative to G and H can be obtained. We shall present an algorithm for ob-

taining the equivalence classes of functions counted in de Bruijn’s theorem, i.e., to

determine which functions belong to the same equivalence class. Our method is to

associate each function with its incidence matrix. Various weak equivalence re-

lations correspond to products of matrices, and from the entries of the incidence

matrices, equivalent functions can be obtained. Our algorithm does not use the

cycle indices of the permutation groups. We use our algorithm to construct the

family of non-lsomorphic fro-graphs relative to a given group. The numbers of strong

equivalence classes do not appear to be obtainable from Plya’s and de BruiJn’s

theorems. Cavior, in [2], obtained the number of strong equivalence classes relative
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to the symmetric groups. We apply our algorithm to strongly equivalent functions.

With the help of Plya’s and de BrulJn’s theorems, our algorithm enables us to deter-

mine the numbers of strong equivalence classes relative to some subgroups of the sym-

metric groups.

2. THEOREMS OF POLYA AND DE BRUIJN.

Let G be a permutation group acting on a set D {1,2 ,m}. Since every

permutation can be uniquely written as a product of disjoint cycles, the cycle index

of G is defined as the following polynomial in Q[Xl,X2 x where Q is the
m

field of rational numbers and xlxj xjxi for i,j 1,2 m:

bI
b
2

bI
xI x

2 x mPG(’2’ "’’’) "7 G m

where I<I +/-s the order of G and b
i

is the number of cycles of length i in the

disjoint cycle decomposition of u for i 1,2,...,m.

THEOREM i. (Plya [8],[9],[i0]). Let R
D

be the set of all functions from a

finite set D into a finite set R, G be a permutation group acting on D, w be

a function from R into R’ where R’ is a commutative ring with an identity con-

R
D

raining the rational numbers Q, and a relation he defined on such that

f g if and only if there exists a G with f(d) g(d) for every d D.

(This relation is an equivalence relation. Consequently, R
D

is partitioned into

disjoint equivalence classes {F}, where each F is called a pattern.) Then the

total patterns, denoted by [ W(F), is
F

WCF) PG( wCr), (w(r))2,..., [ (wCr))k,...)
F rR rcR reR

(1)

where PG is the cycle index relative to G. If w(r) I for every r e R, then

the number of total patterns is

IX W(F)l P(IP,.I,IP-I,...,IRI,...) (2)
F

where IRI is the cardlnallty of R.

THEOREM 2. (de BrulJn [11],[12]). Let R
D

be the set of all functions from a
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finite set D into a finite set R, G be a permutation group action on D, H be

R
D

a permutation group acting on R and a relation be defined on such that

f g if and only if there exist a o e G and a e H with f(od) rg(d) for

every d D. (This relation is an equivalence relation. Consequently, R
D

is par-

tltloned into disjoint equivalence classes {F}, where each F is called a pattern.)

Then the number of total patterns is

[pG(
Zl+Z2+’’’, 2(z2+z4+’’’) 3(z3+z6+...)

z-- z3
PH(e e e )] (3)

evaluated at zI z
2

0.

If H is the identity group acting on R, then (3) is (2) in Plya’s theorem.

THEOREM 3. Let D
D

be the set of all functions from a finite set D whose

cardlnallty is m into itself, G be a permutation group acting on D, and a rela-

"DD DDtion be defined on such that for every f and g e f g if and only

-I
if there exists a o e G with o f(od) g(d) for every d e D. (This is an equi-

valence relation. Consequently, D
D

is partitioned into disjoint equivalence classes

{F}, where each F is called a pattern.) Then the number of total patterns is

m c.
I J cj

l

oeG i=l j i

(4)

where c. is the number of cycles of lenght i in the disjoint cycle decomposition

of o for i 1,2,...,m.

I
The number of equivalence classes in DD is (number of functions f

DDsuch that fo of) and the number of f e such that

m c
i

fo of is i=lH (ji j cj) For details, see [7].

3. AN ALGORITHM.

Let G and H be permutation groups acting on D {l,2,...,m} and R

{l,2,...,n} respectively. For convenience, we shall call the weak equivalence rela-

tion in R
D

relative to G and H the G-H-relation, i.e f and g in R
D

are

said to be G-H-related if and only if there exists a o e G and a T e H such that
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-i
T f(od) g(d) for every d e D. Clearly, it is an equivalence relation, and R

D

is partitioned into disjoint classes each of which is called a G-H-class. Let G*

be the m m permutation group corresponding to G, i.e., G*-- G, H* be the

n n permutation group corresponding to H, i.e., H*__ H, and I be the set of

all m n (O,l)-matrices A (aij) where each row of A consists of exactly one

i and all other entires are zero. Two matrices A and B are said to be G*-H*-

-I
related if and only if there exist a P e G* and a Q e H* such that PAQ B.

Clearly, this relation is an equivalence relation called a G*-H*-relation, and I

is partitioned into disjoint equivalence classes each of which is called a G*-H*-

class.

Similar to Lemma 1 in [13], we have

THEROEM 4. Let : R
D
* I be defined by (f) A where A (aij) with

i for i 1,2,...,m, and all other entries 0. Thenai,f(i)
(i) is a bijective map, and

(2) preserves the G-H-relation in R
D

and the G*-H*-relation in I.

PROOF. (i) Clearly, is well defined. Let (f) A (aij) with ai,f(1)--
i for i 1,2,...,m and all. other entries 0, and (g) B (bij) with

bi,g(i i for i 1,2,...,m and all other entries 0. If A B, then ai,f(i)--

bi,g(i for i 1,2, m, i.e., f g. Hence, is injective. Since

mIRDI III n is bijective.

(2) Let f and g belong to the same G-H-class, i.e., there exist a

and a T e H such that T-Ifo g, (f) A (aij) and n(g) B (bij)
with ai,f(i) 1 and bi,g(i I for i 1,2 ,m and all other entries 0.

Then b i for i 1,2,...,m and all other entries 0.
i, -if(i)

Let P (Pij) and Q-- (qij) be the permutation matrices corresponding to

and respectively. By using the properties of permutation matrices, we have

(PAQ-I)
ij I - Pisastqjt Piuauvqjv auv aoi,;J (5)

t s

for all i 1,2,...,m and j 1,2,...,n with i u and Tj v. But since all
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aoi,Tj --0 except aGi,f(ol) i for i-- 1,2,...,m, TJ fCol), i.e., J

T-if(ol) and (PAQ-I) i for i 1,2,...,m and all other entries 0.
i,m-lf(oi)

Hence, PAQ-I B, and A and B belong to the same G*-H*-class.

Conversely, if A and B belong to the same G*-H*-class, then there exist a

-i -i
P G* and a Q e H* such that PAQ B. Since n is biJective, n exists,

-IA - Since by (5) (PAQ-I)ij ai,rJ’say n f and n g. all (PAQ-I)
iJ

are

I for i 1,2,...,m, i.e., ] f(i) or J T-If(oi).0, except ai, f(i)
Also, all the entries of B (bij) are 0, except bl,g(i 1 for i- 1,2,...,m.

Since (PAQ-I)ij (B)ij for i 1,2 m and J 1,2,...,n, T-if(ol) g(i)’

for i 1,2,...,m, i.e., T-ifo g, and f and g belong to the same G-H-class.

From our Theorem 4, we know that for each f RD there exists a unique n(f)

A (aij) in I with ai, f(i) I for i- 1,2,...,m and all other entries 0 (A

is called the incidence matrix of f). Now for every o G and every z e H,

a i for i 1,2,...,m and all other entries 0 determine a matrix
-li, m-lf(i)

B in I. Let P-- (plj) and Q (Qij) be the permutation matrices corresponding

to and respectively. Then PAQ-I B and A and B are G*-H*-related.

From Theorem 4, for each B e I there exists a unique n-l(B) g in R
D

and f

and g are G-H-related. Consequently, we have the following algorithm for obtaining

all equivalence classes, i.e., for determining which functions are in the same equi-

valence class:

Step i. Select any f e RD and write

al,f(1) a2,f(2) a
m, f(m)

Ste_. For every e G and every z e H, compute

a
_ii, -If a-I a-I -ifT (l) 2,-If(2) m, (m)

Each computation determines a function in RD, and the equivalence class containing

f consists of these distinct functions.

Step 3. Select a function in R
D

which is not a member of the equivalence class

obtained in Step 2. Repeat Steps i and 2. Continue the process until every function
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in RD appears in an equivalence class.

EXAMPLE i. Let G {c
I (i), u2-- (23)} act on D {1,2,3} and H

{TI (i), T2 (12)} act on R {1,2%. Then the cycle indices of G and H are,

respectively,

i 3
Pc(Xl,X2,X3) (xI + XlX2) and

1(2PH(YI’Y2 Yl + Y2)"

Therefore, by using (3), the number of weak equivalence classes in R
D

is 3. If the

8 functions in R
D

are given as

fl f2 f3 f4 f5 f6 f7 f8

i i i 2 I 2 2 2

i i 2 I 2 I 2 2

I 2 i I 2 2 i 2

then the algorithm can be used to determine the 3 classes so that

RD {fl,f.8} k {f2’ f3’ f6’ f7 } U {f4,f5}.

4. APPLICATIONS.

We consider the weak equivalence classes in R
D

relative to the groups G and H.

Let f R
D

and C(f) {(u,T) e G H; T-Ifu f}. Clearly, C(f) is a subgroup

of the product group G x H.

THEOREM 5. The cardinality of the weak equivalence class containing f in

RD relative to the groups G and H is equal to the index of C(f) in the product

group G H. Hence, II divides

The proof is not difficult and hence is omitted.

COROLLARY 5.1. The cardinallty of the right equivalence class containing f

in R
D

relative to the group G is equal to the index of the subgroup C(f)
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COROLLARY 5.2. The cardinality of the left equivalence class f containing f

in R
D

relative to the group H is equal to the index of the subgroup C(f)

{me H; m-if f} in H. Hence, II divides INf.

COROLLARY 5.3. The cardinallty of the similar class containing f in RD

relative to the group G is equal to the index of the subgroup C(f) {o e G; o-lfo
f} in G. Hence, 15] divides GI.

A. The cycle indices for many families of groups are known, e.g., see p. 36 in

[9]. In particular, the cycle index of the cyclic group C of order q on p
q

points is

q

PC (Xl’X2’’"’Xq)
i qq

where #(i) is the Euler’s phi-function.

EXAMPLE 2. Let G <(123...q)> be the cyclic group generated by (123...q)

acting on q+k points. Then

PG(Xl,X2,... x ( Xl). (6)q,Xq+I, Xq+k)

Let G be the permutation group acting on D {l,2,...,q,q+l,...,q+k m} and H

be the identity group acting on R {l,2,...,n}. Then, by using (3), the number

of the right equivalence classes in RD relative to G is:

n(zl+z2+...+z +...)
N [PG(-I z-- --) (e n

)]Zl=Z2=...=0
m

q
I (#(i)ni nk). (7)
qiqT

In particular, if G
1

<(1234)> acts on D {1,2,3,4,5} and H is the iden-

tity group acting on R D, then by (.7) the number of right equivalence classes in

D
D

relative to G1 is 825.

We show the following:

(a) There are 25 right equivalence classes each of cardinality 1. By using our

algorithm, the function corresponding to
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ali a2i a3i a4i a5j i

is not changed for any o m GI, i 1,2,...,5 and j 1,2,...,5.

(b) There are 50 right equivalence classes each of cardinality 2. Applying

(1234), o2 (13)(24), 3 (1432) and o4 (i) to

all a2j a3i-- a4j a5k i

for i # J, i,j 1,2, 5 and k 1,2, 5, we have

a4i alj a2i a3j a5k I, (8)

a3i a4j all a2j a5k i, (9)

a2i a3j a4i alj a5k i, and (i0)

all a2j a3i a4j a5k I. (Ii)

Since (8) and (9) are the same as (i0) and (ii) respectively, there are

5 () 50 right equivalence classes each of cardinality 2.

(c) Since by Corollary 5.1 there is no right equivalence class of cardinality 3, the

number of right equivalence classes of cardinality 4 is 825-25-50 750. Our

results in this example with GI <(1234)> coincide with the results on p. 113

in [12].

EXAMPLE 3. Let H <(123...q)> be the cyclic group generated by (123...q)

acting on q+k points. Then the cycle index of H is the same as (6). Let G be

the identity group acting on D {l,2,...,m} and H be the group <(12...q)> act-

ing on R {l,2,...,q,q+l, q+k n}. Then, by using (3), the number N of the

left equivalence classes in R
D

relative to H is given by

N lq [nm + iq @(i)km]. (12)

i>l

In particular, let G be the identity group acting on D {1,2,...,5} and HI

be the group <(1234)> acting on R D. Then the number of left equivalence classes
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in DD relative to HI is 782 by using (12), or hy using (3) and (7).

We show the following: By using our algorithm, the function corresponding to

a15 a25 a35 a45- as.5 I

is in an equivalence class by itself Now consider

a2, a5al’Jl J2 a3’J3 a4’J4 ’J5

where Jk are not all 5 for k 1,2,...,5.

Then with T (.1234), we have

I

a
-i

a -I a
z-I

a
-i

a
-i

i,
l,z Jl 2,z J2 3, -]3 4, J4 5, J5

a
-lj

a
-lj

a
-lj

a
-lj

a
-lj

i,
I, (_T2)

i 2, (z2)
2 3, (z2)

3 4, (.z2) 4 5, (.z2)
5

a
-lj

a
-lj

a
_lj3

a
-lj

a
-lj

i,
i, (z3)

1 2, (z3)
2 3, (z3) 4, (z3) 4 5, (z3)

5

a3, a4 a5ai’Jl a2’J2 J3 ’J4 ’J5
All of the functions corresponding to the above matrices are different and therefore,

the cardinality of the equivalence class is 4. Hence, there is only one equivalence

class of cardinality i and all the others are of cardinality 4, that is, there are

782 i 781 equivalence classes of cardinality 4. Our results in this example

thus coincide with the results on p. 353 in [4].

B A labeled directed graph with m vertices is said to be an f -graph if the
m

out-degree at every vertex is i. Thus, the incidence matrix of an fro-graph belongs

to the set of m x m matrices I. Conversely, every matrix in I determines a uni-

que fm-graph. Let G be a permutation group acting on m points Two fm-graphs
XI and X2 are said to be G-isomorphic if and only if there exists a o G such

that o maps the vertices of XI onto the vertices of X2, and o preserves the

directed edges, i.e., [oa, ob] is a directed edge in X
2 if and only if [a,b] is

a directed edge in XI. A G-isomorphism of XI onto itself is said to be an auto-
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morphlsm of XI. Let AI and A2 be the incidence matrices of XI and re-

spectively. Then it is well known that XI and X
2

are G-isomorphlc if and only if

-I
there exists a permutation matrix P corresponding to a u e G such that PAIP

Since the set of all functions from m points into itself is in one to one cor-

respondence with the set of all fro-graphs, we may use (4) to count the number of non-

isomorphic classes of f -graphs relative to G, i.e., the number of nonlsomorphlc
m

classes of f -graphs relative to G is
m

I m c
i

eG i=l J i

where c
i

is the number of cycles of lenght i in the disjoint cycle decomposition

of e for i 1,2 .... ,m.

(13)

EXAMPLE 4. Let G <(123)> act on {1,2,3}. Then the number of nonisomorphic

I 3 i i]classes of f3-graphs relative to O is, by using (13), [(1.3) + (3.1) + (3-1)

ii. By using our algorithm, we have the following nonisomorphic f3-graphs relative

to G:

i I 1

2 3 2 3

(i) (ii) (iii) (iv)

2 3

(v) (vl) (vii) (viii)

(ix) (x) (xi)

EXAMPLE 5. Replace G <(123)> in Example 4 by the symmetric group S
3 on

{1,2,3}. Then the number of nonisomorphic classes of f3-graphs relative to S3 is,

1 3 1 l) i]by using (13), [(1"3) + 3((1.1) (1"1+2"1) + 2(3-1) 7, and the nonlsomorphic
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f3-graphs (relative to S 3) are: (i), (ii), (iv), (v), (vi), (viii) and (x), i.e.,

(ii) is isomorphic to (iii) by (23), (.vi) is isomorphic to (vii) by (12), (viii) is

isomorphic to (ix) by (13), and (x) is isomorphic to (xi) by (23).

By applying (4), de BruiJn in [12] obtained the number N of similar equi-m

valence classes relative to the symmetric group S as
m

m

m (e) i--1 j +/-

k
i

J kj) (ki! ikl) -I (14)

where the first summation is over all m-tuples (kI k
2 k of non-negative in-

m

tegers k
i

which satisfy kI + 2k
2 + +mk m. The first few values of N

n m

are given by NI I, N
2 3, N

3 7, N4 19, N5 47, N
6 130. Formula (14)

gives the answer to the problem posed by Cavior in [2, p. 128] concerning the number

of similarity classes relative to the symmetric group.

C. On p. 129 in [2], Cavior obtained the number of strong equivalence classes

in DD relative to’ S and S where D {l,2,...,m} and S is the symmetric
m m m

group on D. Here, with the help from the theorems of P61ya and de Bruijn, we apply

our algorithm to obtain the following theorems.

THEOREM 6. Let D {l,2, ,m} where m is an odd integer, R {1,2}, G

be any permutation group actin8 on D and H be the group <(12)> acting on R.

Then every strong equivalence class in R
D

relative to G and H consists of only

one function, i.e., the number of strong equivalence classes is 2m.

PROOF. Let f be any function in R and Af (aij) be the incidence matrix

f with

a 1al,iI a2,12 a3,i3 m,im

and all other entries 0 where ik
is either i or 2 for k 1,2,...,m. Then, by

using our algorithm, the right equivalence class relative to G containing f con-

sists of the functions corresponding to the set of matrices [Af; s e G, and

a
_i

I
a

_12 a-I a-i
0 ,iI ,i2 0 3,i3 m

i and all other entries 0}. The

left equivalence class relative to H containing f consists of the set of matrices



EQUIVALENCE CLASSES OF FUNCTIONS ON FINITE SETS 757

{ATf; T e H and a
-i

a

_ii2
a

_i13
a

-i
i and all other

i, iI 2, 3, T m, i
m

{-lil -I -Ientries 0}. Since m is odd, the set ,T i
2

T im} # {iI i2,...,i for
m

(12). Hence, the intersection of the left equivalence class relative to G con-

taining f and the right equivalence class relative to H containing f is {f}.

Consequently, the number of strong equivalence classes relative to G and H is

IRDI IRI IDI 2m.
In [8], Theorem 5.3 states: Let S be the set of all one-to-one functionsn

from a finite set D {l,2,...,n} onto itself, G be a permutation group acting on

the domain D, H be a permutation group acting on the range D and an equivalence

relation relative to G and H in S be defined as follows: f g if and onlyn

-Ifif there exist a e G and a T e H such that (ad) g(d) for every d D

Then the number of patterns (equivalence classes) is

[PG(
I

__._
z2 z3

,...) PH(Zl,2Z2,3z3,...)] (15)

evaluated at zI z
2 z

3 0. (15) is also equal to

PG(Zl,2Z2,3z3 )] (16)

evaluated at zI z
2 z3 0.

Let p be a prime, G be the cyclic group C of order p generated by
P

(12 p) acting on D {l,2,...,p}, and H be the identity group acting on D.

By using (15) and Corollary 5.1 restated for one-to-one functions, it can be shown

that there are (p-l)! right equivalence classes in S relative to C each of
P P

order p. Similarly, the number of left equivalence classes in S relative to H
P

C is (p-l)! and the cardlnallty of each equivalence class is p. These results
P

are in agreement with those concerning permutation polynomials over finite fields ob-

talned by Mullen in [6].

THEOREM 7. Let D {1,2 p} and R {1,2, q} where p is a prime and

q is an integer greater than i, C be the cyclic group of order p generated by
P

(12...p) acting on D, and C be the cyclic group of order q generated byq

(12...q) acting on R.
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(a) If q is not a multiple of p, then every strong equivalence class in R
D

relative to C and C consists of only one function, i.e., the number of
P q

strong equivalence classes in R
u

relative to C and C is, qP.
P q

(b) If q p (i.e., D R and C C ), then the number of strong equivalace
P q

D
classes in D relative to C and C is pP (p-l) 2.

P P

PROOF. (a) We claim that the number of weak equivalence classes relative to

C and C is
I

P are
I_-- p-i + i)and that there (qp-l-l) weak equivalenceP q P

classes each having cardinality pq, and there is one weak equivalence class having

cardlnal+/-ty q. Since PC (Xl,X2,...,Xp) ip (x + (p-l)Xp) and PC (Xl’X2,...,xq)
li, P=--I (i)xq

i by (3), the number of weak equivalence classes IWI
q

is
qiqT

i (P + (p-l)--) l(eq(zl+z2+’’’) + T) ]ZlfZ2ffi .=0
(17)Iwl q

where the function T does not involve z. and z The reason is that every non-
P

identity permutation in C has no fixed points and p and q are relatively prime.q

Hence, (17) is equal to

I qp IIW[ = + (p-l)q) (qp-I + P I). (18)

R
D

Applying our algorithm to the function fl e corresponding to all- a21

a31 apl i, we have the weak equivalence class fl consisting of the q

functions corresponding to

all a21 a31 apl

a12 a22 a32 ap2

a13 a23 a33 ap3

1.alq a2q a3q apq

Not counting the weak equivalence class above, we still have

(19)
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(qp-I + P I) 1 -1 (qp-i i) weak equivalence classes Since there are
P P

qP functions and since each weak equivalence class can have its cardinallty at

most pq, the cardlnallty of each of these
1 (qp-1 1) weak equlvalence classes
P

is pq.

Now we show that every strong equivalence class in R
D

relative to C and C
P q

consists of only One function. Clearly, applying our algorlthm to each function in

i’ we have that each function belongs to a strong equivalence class" consisting of

only itself. Let f and g be strongly equivalent functions in RD and not in i’
i.e., there exist a u C and a z C such that fu g and Tf g. Assume

P q

f g. Then none of and z could be the identity, and we would have e2-1fu
and (.z-1)-lfe

I in the same weak equivalence class in R
D

relative to C and C
P q

where eI and e2 are the identities of C and C respectlvely. Since f
P q

the weak equlvalence class containing f has cardlnallty pq, i.e., e2-1fu
(T-1)-lfel But e2-1fo g (z-1)-lfe

1. That is a contradiction, and the cardi-

nallty of every strong equlvalence class in R
D

relative to C and C is i,
P q

i e., the number of the strong equivalence classes in R
D

relative to C and C
p q

is RDI qP.

(b) First, we consider the set S of all one-to-one functions in DD. We
P

claim that if f belongs to normalizer of C in the group Sp, then the cardi-
P

nality of the strong equivalence class containing f relative to C and C is p.
P P

The cardinalfty of any right equivalence class in S relative to C is p. Let
P P

f and g be any two right equivalent functions relative to C Then there exists
P

a u e C such that fu g. Since f S f exists. Let z fuf Since
P P

T C Then Tf (fuf-1)f. fuf is a normalizer of C and since u e C
P P P

Consequently, the cardinality of the strong equivalence class containing f relative

to C and C is p. We note that if f is a normalizer of C in S
P P P P

then fo

is also a normalizer of C in S for every u C
P P P

We claim that if f belongs to S and f is not normalizer of C in S
P P P

then the cardinality of the strong equivalence class containing f relative to C
P

and C is i. Let f and g be strongly equivalent functions, i.e., there exist
P

and in C such that fu g and f g. Assume that f g. Then neither
P
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-I
c nor is the identity, fc Tf and ff T. Since is not the identity,

fulf-i (ff-l) (ff-l) ...(fuf-l) rl for i 1,2,...,p, i.e., f is a norm-

alizer of C in S That is a contradiction. Hence, f g, and the cardinality
P P

of the strong equivalence class containing f relative to C and C is i.
P P

D
D

We claim that if f e and f S then the cardlnality of the strong equi-p’

valence class containing f relative to C and C is I. First, we shall con-
P P

sider the number IWI of weak equivalence classes in DD relative to C and C
P P

By using (3), we have

P z p P

pp-2 + p i.

p(z +...)
+ (p-l)e P ]Zl--Z2=...=0

(2O)

Let ..lpl be the number of weak equivalence classes in Sp relative to Cp and Cp.
By (15), we have

I ((p_l)! + (p-l)2).
P

(21)

Since a one-to-one function can only be weakly equivalent to a one-to-one function and

since a non-one-to-one function can only be weakly equivalent to a non-one-to-one

function the number II of weak equivalence non-one-to-one functions in D
D

re-

lative to C and C is
P P

1 2)II [WI [g (.pp-2 + P I) ((p-l)! + (p-l)
P

(22)

D
D

a2Applying our algorithm to the function f2 e corresponding to all i

a31 apl I, we have the weak equivalence class f2 consisting of p func-

tlons corresponding to
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i,all a21 a31 apl

a12 a22 a32 ap2

(23)

i.a
2

aalp p a3p pp

Not counting the weak equivalence class above, we still have II i weak

equivalence classes of non-one-to-one functions in DD. Since there are DDI Sp
pP p! non-one-to-one functions and since each weak equivalence class can have

its cardinallty at most p2, the cardlnality of each of these II I weak equl-

2
valence classes is p because

i 2 ppP + p2[l_l P + p2[(pp-2 + P i) (.(p-l)! + (p-l) 2] p p!.

Similar to the proof in (a) with q p, we may conclude that every strong

equivalence class of non-one-to-one functions relative to C and C consists of
P P

only one function.

We know that [DDI pP, Sp[ p! and the cardinallty of the normallzer of

C in S is p(p-l) (see 2.3 on p. 12 in [14]). Since the cardlnallty of the
P P

strong equivalence class containing the normallzer f of C in S is p
P P

and since every function in is also a normallzer of C in S there are p-i
P P

strong equivalence classes each of which has cardinallty p. Since every other

strong equivalence class has cardlnallty i, the number of strong equivalence classes

in DD relative to C and C is
P P

(pP p!) + (p! p(p-l)) + (p-l) pP (p-l) 2.
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