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ABSTRACT. The Hardy-Littlewood maximal theorem is extended to functions of class

PL in the sense of E. F. Beckenbach and T. Rad, with a more precise expression of

the absolute constant in the inequality. As applications we deduce some results on

hyperbolic Hardy classes in terms of the non-Euclidean hyperbolic distance in the

unit disk.
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i. INTRODUCTION.

Let D { Izl < i}, let T [0,2), and let u be a function subharmonic in

D. For a function g on T we denote

1 I Ig Ip(t)dt ]I/p;

hereafter always 0 < p < unless otherwise specified. Then, although u is not

defined on T we customarily denote

JUIp lim SUPr __> i-0 Urp’
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where Ur(t) u(reit), tT, 0 (r <i. For simplicity, llflIp =II Ifl p for f

holomorphic in D. Let S(t,R) be the domain consisting of the interior of the

convex hull of the circle zl R < I and the point e
it (t T); hereafter always

0 < R < i. The maximal function MR(U of u is defined on T by

MR(u)(t) sup [u(z); z S(t,R)}.

Let Hp be the Hardy class consisting of all functions f holomorphic in D

such that llfll < co. Each f H
p

has the radial limit f*(t)
P

limr 1-0
f(reit) at e

it
for a.e. t T, and f* LP(T). We then observe that

IlfIlp =Ilf*llp [i, Theorem 2.6, p. 21].

In the present paper we introduce the Hardy-Littlewood number a(p,R) of order

(p,R) by

a(p,R) sup llMR(Ifl)Ip/llfllp; f Hp, f 0.

The celebrated Hardy-Littlewood theorem [3, Theorem 27, p. 114] then reads that

a(p,R) < co for each pair (p,R). The main purpose of the present paper is to prove

that a*(p,R) a(p,R) a(1,R) l/p, where a*(p,R) is defined in terms of functions

of class PL [4, p. 9].

A function u defined in D is said to be of class PL, or u PL, if u 0

and if log u is subharmonic in D; we regard -co as a subharmonic function. For

u PL, the function up is subharmonic in D, and for f holomorphic in D, the

modulus Ifl PL. Let PLp be the family of all u PL such that lull ( co. It
P

will be observed that u PLp has the radial limit u*(t) at e
it

for a.e. t

T and that llul flu*Ifp. Apparently, IfIPLp if f C Hp. Set

Since i Hp, it follows that i < a(p,R) < a*(p,R). We first observe

THEOREM 1. a*(p,R) a(p,R) a(1,R) 1/p.

REMARK. Let Sp be the family of subharmonic functions u _> 0 in D such

that IlUllp < co, where p 1. Then
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b(p,R) sup llMR(U)Ilp/UIlp; u Sp, u 0)

is finite for p i by [3, Theorem 26, p. 113]. Obviously,

a*(p,R)<_b(p,R) for p .
To propose an application to the hyperbolic Hardy class H we let

(z,w) tanh-l( z wlllm z-wl)

be the non-Euclidean hyperbolic distance between z and w in D. Set (z)

(z,0) log[(l + zl)/(l Iz)], z D. For f holomorphic and bounded, If

in D, the hyperbolic counterpart of Ifl is (f). We thus define Hi, as

the family of such f with ll(f)|p < o. The subharmonicity of (f)P

exp[p log (f)] follows from that of log (f) (or, (f) E PL) observed in [6].

P A few modifications of the proof of [6Therefore (f) PLp for all f H
Theorem 4], with H show that H is a semigroup with respect to the

and is convex. Since each f E H is bounded, f has the radialmultiplication,

it
limit f*(t) at e for a.e. t T. We then propose

THEOREM 2. For each f H the function (f) is a member of LP(T), and

IT (f(reit) ,f*(t) )Pdt --> 0 as r -- i-0.

The inequality

sup (f)P(z); z S(t,R)dt
_
a(l,R)I

T T

holds for all f HP-.

Y(f*)P(t)dt

The first assertion, a consequence of the s@cond, is the hyperbolic counterpart

of the F. Riesz theorem [i, Theorem 2.6].

2. PROOFS.

For the proof of Theorem i it suffices to show that

a*(p,R) < a(1,R) 1/p < a(p,R).
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Since a(p,R) < a*(p,R), the identities in Theorem i follow.

To prove that a(l,R)i/P.a, a(p,R) we let f HI with f 0. Then f admits

an inner-outer factorization, f IF, where I and F are an inner and an outer

function, respectively, such that the radial limits satisfy I*l I and IF*I
FI/P HPf*l a e on T Since F is zero-free in D g so that f*l g*lp

a.e. on T. Therefore,

IIMR(Ifl)II I < IIMR(IFI)III IIMR( Igl)ll p < a(p,R)Pllgl[pp a(p R)PflII

whence a(l,R) < a(p,R) p.

To prove that a*(p,R) < a(l,R) I/p, we let v PLp
with v 0. Setting u

X
p log v and (x) e one finds that v

p (u). Since (u) admits a harmonic

majorant in D, there exists a positive harmonic majorant of u in D [5, p. 65].

The F. Riesz decomposition then yields that u u^ P, where P > 0 is the Green

potential in D, and

^ ( zlu (z)= 2---- )TIeit z2 (zD)

is the Poisson integral of the measure

d(t) u’(t)dt + d/As(t).

The radial limit u* of u is of LI(T)- and db[ (t) is singular with respect, to

dt. It follows from a general theorem [2, Theorem], applied to the present u and, that ds(t) 0 a.e. on T and that (u*) LI(T). Consequently,

1 I 1 z2
u(z) <_ h(z) 2-- it 2

u*(t)dt (z D),

and the Jensen inequality yields that

5o(u) _< ) _< v,

h+ik
where V is the Poisson integral of O(u*). Set f e where k is a conJu-
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gate of h in

(u*) v*p.

D. Then, Ifl (h)V, so that fHI
with If* (h’)

On the other hand, v
p (u) <_ (h) fl in D, whence

P < MR(Ill) < a(l,R) IlfllIR(v)ll p

The Lebesgue dominated convergence theorem, together with

vP(t)r "< MR(v)P(t) (t T),

yields that IIVr Ilpp Vlpl
p

Ilv*llp
p

IIfll

,R)I/Pa,, follows from

as r--> i-0. Therefore a*(p,R) <

We next prove Theorem 2. Set

Since

so that

((f) PLp for all f H, it follows that a(p,R) <_ a*(p,R) a(l,R) I/p

MR(

As is observed in the proof of Theorem i, (f)* ((f*) a.e. on T because (f)

g PLp, and (f) p (f*)p" Thus, the second assertion holds with (f*)

LP(T). The Lebesgue dominated convergence theorem with the estimate

(f(reit),f*(t))p <_ 2p(f)p(reit) + 2P((f*)P(t) 2P+IMR(((f)P)(t)

2P+IMR((f))P(t),
again yields that

IT ((f(reit),f*(t))Pdt -- 0 as r -- i-0.

REMARK.

I ao_(p,R).

Since (f) i for f (e2 1)/(e2 + l) Hp it follows that
0-’
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