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ABSTRACT. The Hardy-Littlewood maximal theorem is extended to functions of class
PL in the sense of E. F. Beckenbach and T. Rad6, with a more precise expression of
the absolute constant in the inequality. As applications we deduce some results on
hyperbolic Hardy classes in terms of the non-Euclidean hyperbolic distance in the
unit disk.
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1. INTRODUCTION.
Let D =1lz|<1}, let T = [0,27t), and let u be a function subharmonic in

D. For a function g on T we denote
= 1 p 1/p,
teh, = [ 3% §T|g| (t)at 17755

hereafter always 0 < p < @ unless otherwise specified. Then, although u is not

defined on T we customarily denote

luup = lim sup l—O"ur“p’
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where ur(t) = u(relt), t&€T, 0<r<l. For simplicity, ”f“p = |f] ”P for f
holomorphic in D. Let S(t,R) be the domain consisting of the interior of the
convex hull of the circle |z| =R < 1 and the point et (t € T); hereafter always

0< R< 1. The maximal function MR(u) of u is defined on T by

Mo (u)(t) = sup {u(z); z €s(t,R)}.

Let H® be the Hardy class consisting of all functions f holomorphic in D
such that IIfll < @. Each f€ H® has the radial limit f*(t) =
it it * P
) at e for a.e. t € T, and f*¥ € L*(T). We then observe that

1 f(re

imH 1-0
Hfﬂp =ﬂf*|lp [1, Theorem 2.6, p. 21].

In the present paper we introduce the Hardy-Littlewood number a(p,R) of order

(p,R) by
a(p,R) = sup {Mp(I£D) I /Ul 5 £€ B, £ 2 o}

The celebrated Hardy-Littlewood theorem [3, Theorem 27, p. 114] then reads that
a(p,R) < © for each pair (p,R). The main purpose of the present paper is to prove
that a*(p,R) = a(p,R) = a(l,R)l/p, where a*(p,R) is defined in terms of functions
of class PL [4, p. 9].

A function u defined in D 1is said to be of class PL, or u € PL, if u>0
and if log u 1is subharmonic in D; we regard -co as a subharmonic function. For
u € PL, the function WP is subharmonic in D, and for f holomorphic in D, the
modulus |f}€PL. Let PLP be the family of all u € PL such that llullp< . It
will be observed that u & PL® has the radial limit u*(t) at e forae. t €

T and that ful = fu*| . Apparently, |f|€ PP if fe€HP. set
- . P
a*(p,R) = sup { | Mp(u)ll /hui s w € PLY, u £ 0}.

Since 1€ Hp, it follows that 1 < a(p,R) < a*(p,R). We first observe

THEOREM 1. a*(p,R) = a(p,R) = a(1,R)>/P.

"

REMARK. Let SP be the family of subharmonic functions u >0 in D such

that "u[]p( @®, where p > 1. Then
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= . 13
b(p,R) = sup {[]MR(u)HP/Huup, u€gs?, u#o}
is finite for p > 1 by [3, Theorem 26, p. 113]. Obviously,
a*(p,R) < b(p,R) for p > 1.
To propose an application to the hyperbolic Hardy class Hg- we let
-1 —
6(z,w) = tanh (|z - w|/I1 - zw|)

be the non-Euclidean hyperbolic distance between 2z and w in D. Set G(z) =
6(z,0) = 3 log[(1 + [z})/(1 - |z})], z€D. For f holomorphic and bounded, |f|
< 1, in D, the hyperbolic counterpart of |[f| is 6(f). We thus define Hg as
the family of such f with HG(f)lp < ®. The subharmonicity of s(£)P =

exp[p log 6(f)] follows from that of 1log 6(f) (or, o6(f) € PL) observed in [6].
Therefore G6(f) € PLY for all f € HB, . A few modifications of the proof of [6,
Theorem 4], wj:th Hi = Hé- , show that Hg. is a semigroup with respect to the
multiplication, and is convex. Since each f € Hg. is bounded, f has the radial
limit f£*(t) at eit for a.e. t € T. We then propose

THEOREM 2. For each f € HI;_ , the function 6(f*) is a member of Lp(T), and

S 6(r(re’®),t*(t))Pat —> 0 as r — 1-0.
T
The inequality

S sup {d(f)p(z); z €s(t,R)}dt < a(l,R)S 6 (£%)P(t)at
T T

holds for all f € Hg, .

The first assertion, a consequence of the second, is the hyperbolic counterpart
of the F. Riesz theorem [1, Theorem 2.6].
2. PROOFS.

For the proof of Theorem 1 it suffices to show that

a*(p,R) < a(1,R) P < a(p,R).



718 S. YAMASHITA

Since a(p,R) < a*(p,R), the identities in Theorem 1 follow.

To prove that a(l,R)l/Pg a(p,R) we let fC H' with f £0. Then f admits
an inner-outer factorization, f = IF, where I and F are an inner and an outer
function, respectively, such that the radial limits satisfy |I*| =1 and |F¥| =
|f*) a.e. on T. Since F is zero-free in D, g = Fl/r)éz HP, so that [£*] = lg*\p

a.e. on T. Therefore,

M CeDI < (Mg PDI = 1M Cle DI < alesR)Piei = ale,RIPIfl,

whence a(l,R) < a(p,R)p.

To prove that a¥*(p,R) < a(l,R)l/p, we let v GEPLP with v # 0. Setting u =
p log v and 3ﬂ(x) = e*, one finds that P = go(u). Since 90(u) admits a harmonic
majorant in D, there exists a positive harmonic majorant of u in D [5, p. 65].
The F. Riesz decomposition then yields that u = ut - P, where P > 0 1is the Green

potential in D, and

WNaz) = 5%5 . S - d/((t) (z €D)
T

is the Poisson integral of the measure
d'L(t = u*(t)dat + d/}. (t).

The radial limit u* of u is of Ll(T) and d}is(t) is singular with respectu to
dt. It follows from a general theorem [2, Theorem], applied to the present u and

P, that a(t) <O a.e.on T and that Plu*) € LH(T). Consequently,

2
u(z) € h(2) = 50 g 2w (z €D),
I le”” - z\

and the Jensen inequality yields that

@u) < @h) <V,

+i .
where V 1is the Poisson integral of <P(u*). Set f = eh 1k, where k 1is a conju-
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gate of h in D. Then, || = (P(h) <V, so that £E H  with |[£*]= P (n¥) =
Y.)(u*) = v*P_ on the other hand, v = '(p(u) < (f)(h) = |f| in D, whence

p
M (V5 < UM CIE DT < 2(1,R) g
The Lebesgue dominated convergence theorem, together with
P
va(t) 2 M (v)P(t) (t€m),

yields that ﬂvru§ 7 Ilvllg = uv*ug = Ifl, as r—>1-0. Therefore a*(p,R) <

a(l,R)l/p follows from
(DI < a(1,R) uvug-
We next prove Theorem 2. Set
ag(sR) = sup M (O (NI /Ho(e)l s £ €5 , £ # 0.

Since G (f) € PL? for all ¢ éHg_, it follows that ao_(p,R) < a*(p,R) = a(1,r)1/P,

so that
(SN < s Puo(o) .

As is observed in the proof of Theor=m 1, 6(f)* = G(f*) a.e. on T because &(f)
<€ PLP, and || 6(F) llp = | G(f*)ﬂp. Thus, the second assertion holds with G(f*) €

1P(T). The Lebesgue dominated convergence theorem with the estimate
6 (2(re™®),£%(£)) < 2° 6(£)P(re™®) + 22 6(£%)P(1) < 2% (S(£)P) (%)
= P (6(0)P(v),

again yields that
ST G(f(reit),f*(t))pdt —>0 as r —> 1-0.

2

REMARK. Since 6(f) for f = (e - 1)/(e2 +1) € Hl;_, it follows that

n
’_l

1< a (o,R).
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