ON THE HARDY-LITTLEWOOD MAXIMAL THEOREM

SHINJI YAMASHITA

Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya, Tokyo 158 Japan

(Received May 5, 1981)

<u>ABSTRACT.</u> The Hardy-Littlewood maximal theorem is extended to functions of class PL in the sense of E. F. Beckenbach and T. Radó, with a more precise expression of the absolute constant in the inequality. As applications we deduce some results on hyperbolic Hardy classes in terms of the non-Euclidean hyperbolic distance in the unit disk.

<u>KEY WORDS AND PHRASES.</u> Hardy-Littlewood's Maximal Theorem, Subharmonic Functions of Class PL, Hardy Class, Hyperbolic Hardy Class. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 30D55, 31A05.

1. INTRODUCTION.

Let $D = \{ |z| < 1 \}$, let $T = [0, 2\pi)$, and let u be a function subharmonic in D. For a function g on T we denote

$$\|g\|_{p} = \left[\frac{1}{2\pi}\int_{T} |g|^{p}(t)dt\right]^{1/p};$$

hereafter always 0 unless otherwise specified. Then, although u is not defined on T we customarily denote

 $\|u\|_p = \lim \sup_r \longrightarrow 1-0^{\|u_r\|_p},$

where $u_r(t) = u(re^{it})$, $t \in T$, 0 < r < 1. For simplicity, $||f||_p = |||f||_p$ for f holomorphic in D. Let S(t,R) be the domain consisting of the interior of the convex hull of the circle |z| = R < 1 and the point e^{it} ($t \in T$); hereafter always 0 < R < 1. The maximal function $M_R(u)$ of u is defined on T by

$$M_{R}(u)(t) = \sup \{u(z); z \in S(t,R)\}.$$

Let \mathbb{H}^p be the Hardy class consisting of all functions f holomorphic in D such that $\|f\|_p < \infty$. Each $f \in \mathbb{H}^p$ has the radial limit $f^*(t) =$ $\lim_{r \to 1-0} f(re^{it})$ at e^{it} for a.e. $t \in \mathbb{T}$, and $f^* \in L^p(\mathbb{T})$. We then observe that $\|f\|_p = \|f^*\|_p$ [1, Theorem 2.6, p. 21].

In the present paper we introduce the Hardy-Littlewood number a(p,R) of order (p,R) by

$$a(p,R) = \sup \left\{ \|M_{R}(|f|)\|_{p} / \|f\|_{p}; f \in H^{p}, f \neq 0 \right\}.$$

The celebrated Hardy-Littlewood theorem [3, Theorem 27, p. 114] then reads that $a(p,R) < \infty$ for each pair (p,R). The main purpose of the present paper is to prove that $a^{*}(p,R) = a(p,R) = a(1,R)^{1/p}$, where $a^{*}(p,R)$ is defined in terms of functions of class PL [4, p. 9].

A function u defined in D is said to be of class PL, or $u \in PL$, if $u \ge 0$ and if log u is subharmonic in D; we regard $-\infty$ as a subharmonic function. For $u \in PL$, the function u^p is subharmonic in D, and for f holomorphic in D, the modulus $|f| \in PL$. Let PL^p be the family of all $u \in PL$ such that $||u||_p < \infty$. It will be observed that $u \in PL^p$ has the radial limit $u^*(t)$ at e^{it} for a.e. $t \in$ T and that $||u||_p = ||u^*||_p$. Apparently, $|f| \in PL^p$ if $f \in H^p$. Set

$$a^{*}(p,R) = \sup \{ \|M_{R}(u)\|_{p} / \|u\|_{p}; u \in PL^{p}, u \neq 0 \}.$$

Since $l \in H^p$, it follows that $l \le a(p,R) \le a^*(p,R)$. We first observe THEOREM 1. $a^*(p,R) = a(p,R) = a(1,R)^{1/p}$.

REMARK. Let S^p be the family of subharmonic functions $u \ge 0$ in D such that $||u||_n < \infty$, where p > 1. Then

$$b(p,R) = \sup \left\{ \|M_{R}(u)\|_{p} / \|u\|_{p}; u \in S^{p}, u \neq 0 \right\}$$

is finite for p > 1 by [3, Theorem 26, p. 113]. Obviously,

$$a^{*}(p,R) \leq b(p,R)$$
 for $p > 1$.

To propose an application to the hyperbolic Hardy class ${\tt H}^{\rm p}_{\sigma}$ we let

$$\sigma(z,w) = \tanh^{-1}(|z - w|/|1 - \overline{z}w|)$$

be the non-Euclidean hyperbolic distance between z and w in D. Set $\mathcal{G}(z) \equiv \mathcal{G}(z,0) = \frac{1}{2} \log[(1 + |z|)/(1 - |z|)]$, $z \in D$. For f holomorphic and bounded, |f| < 1, in D, the hyperbolic counterpart of |f| is $\mathcal{G}(f)$. We thus define \mathbb{H}^p_{σ} as the family of such f with $\|\mathcal{G}(f)\|_p < \infty$. The subharmonicity of $\mathcal{G}(f)^p = \exp[p \log \mathcal{G}(f)]$ follows from that of $\log \mathcal{G}(f)$ (or, $\mathcal{G}(f) \in PL$) observed in [6]. Therefore $\mathcal{G}(f) \in FL^p$ for all $f \in \mathbb{H}^p_{\sigma}$. A few modifications of the proof of [6, Theorem 4], with $\mathbb{H}^1_h = \mathbb{H}^1_{\sigma}$, show that \mathbb{H}^p_{σ} is a semigroup with respect to the multiplication, and is convex. Since each $f \in \mathbb{H}^p_{\sigma}$ is bounded, f has the radial limit $f^*(t)$ at e^{it} for a.e. $t \in T$. We then propose

THEOREM 2. For each $f \in H^p_{\sigma}$, the function $\sigma(f^*)$ is a member of $L^p(T)$, and

$$\int_{T} \mathfrak{G}(f(re^{it}), f^{*}(t))^{p} dt \to 0 \quad \text{as} \quad r \to 1-0.$$

The inequality

$$\int_{\mathbb{T}} \sup \left\{ \sigma(f)^{p}(z); z \in S(t,R) \right\} dt \leq a(1,R) \int_{\mathbb{T}} \sigma(f^{*})^{p}(t) dt$$

holds for all $f \in H^p_{\sigma}$.

The first assertion, a consequence of the second, is the hyperbolic counterpart of the F. Riesz theorem [1, Theorem 2.6].

2. PROOFS.

For the proof of Theorem 1 it suffices to show that

$$a^{*}(p,R) \leq a(1,R)^{1/p} \leq a(p,R).$$

Since $a(p,R) \leq a^*(p,R)$, the identities in Theorem 1 follow.

To prove that $a(1,R)^{1/p} \leq a(p,R)$ we let $f \in H^1$ with $f \neq 0$. Then f admits an inner-outer factorization, f = IF, where I and F are an inner and an outer function, respectively, such that the radial limits satisfy $|I^*| = 1$ and $|F^*| =$ $|f^*|$ a.e. on T. Since F is zero-free in D, $g = F^{1/p} \in H^p$, so that $|f^*| = |g^*|^p$ a.e. on T. Therefore,

$$\|M_{R}(|f|)\|_{1} \leq \|M_{R}(|F|)\|_{1} = \|M_{R}(|g|)\|_{p}^{p} \leq a(p,R)^{p} \|g\|_{p}^{p} = a(p,R)^{p} \|f\|_{1},$$

whence $a(l,R) \leq a(p,R)^p$.

To prove that $a^*(p,R) \leq a(1,R)^{1/p}$, we let $v \in PL^p$ with $v \neq 0$. Setting $u = p \log v$ and $\varphi(x) = e^x$, one finds that $v^p = \varphi(u)$. Since $\varphi(u)$ admits a harmonic majorant in D, there exists a positive harmonic majorant of u in D [5, p. 65]. The F. Riesz decomposition then yields that $u = u^{\wedge} - P$, where $P \geq 0$ is the Green potential in D, and

$$u^{(z)} = \frac{1}{2\pi} \int_{T} \frac{1 - |z|^2}{|e^{it} - z|^2} d\mu(t) \qquad (z \in D)$$

is the Poisson integral of the measure

$$d\mu(t) = u^{*}(t)dt + d\mu_{s}(t).$$

The radial limit u* of u is of $L^{1}(T)$ and $d\mu_{s}(t)$ is singular with respect to dt. It follows from a general theorem [2, Theorem], applied to the present u and φ , that $d\mu_{s}(t) \leq 0$ a.e. on T and that $\varphi(u^{*}) \in L^{1}(T)$. Consequently,

$$u(z) \leq h(z) \equiv \frac{1}{2\pi} \int_{\mathbb{T}} \frac{1 - |z|^2}{|e^{it} - z|^2} u^*(t) dt$$
 $(z \in D),$

and the Jensen inequality yields that

$$\varphi(u) \leq \varphi(h) \leq V$$
,

where V is the Poisson integral of $\varphi(u^*)$. Set $f = e^{h+ik}$, where k is a conju-

gate of h in D. Then, $|f| = \varphi(h) \leq V$, so that $f \in H^1$ with $|f^*| = \varphi(h^*) = \varphi(u^*) = v^{*p}$. On the other hand, $v^p = \varphi(u) \leq \varphi(h) = |f|$ in D, whence

$$\|\mathbf{M}_{R}(\mathbf{v})\|_{p}^{p} \leq \|\mathbf{M}_{R}(|\mathbf{f}|)\|_{1} \leq \mathbf{a}(\mathbf{1}, \mathbf{R}) \|\mathbf{f}\|_{1}.$$

The Lebesgue dominated convergence theorem, together with

$$v_r^p(t) \leq M_R(v)^p(t)$$
 $(t \in T),$

yields that $\|v_r\|_p^p / \|v\|_p^p = \|v^*\|_p^p = \|f\|_1$ as $r \to 1-0$. Therefore $a^*(p,R) \le a(1,R)^{1/p}$ follows from

$$\|\mathbf{M}_{\mathbf{R}}(\mathbf{v})\|_{\mathbf{p}}^{\mathbf{p}} \leq \mathbf{a}(\mathbf{l},\mathbf{R}) \|\mathbf{v}\|_{\mathbf{p}}^{\mathbf{p}}.$$

We next prove Theorem 2. Set

$$a_{\sigma}(p,R) = \sup \left\{ \|M_{R}(\sigma(f))\|_{p} / \|\sigma(f)\|_{p}; f \in H_{\sigma}^{p}, f \neq 0 \right\}.$$

Since $\mathfrak{S}(f) \in PL^p$ for all $f \in H^p_{\mathfrak{S}}$, it follows that $a_{\mathfrak{S}}(p,R) \leq a^*(p,R) = a(1,R)^{1/p}$, so that

$$\|\mathbf{M}_{R}(\boldsymbol{\sigma}(f))\|_{p} \leq \mathbf{a}(\mathbf{l},R)^{1/p} \|\boldsymbol{\sigma}(f)\|_{p}$$

As is observed in the proof of Theorem 1, $\sigma(f)^* = \sigma(f^*)$ a.e. on T because $\sigma(f) \in \operatorname{PL}^p$, and $\|\sigma(f)\|_p = \|\sigma(f^*)\|_p$. Thus, the second assertion holds with $\sigma(f^*) \in \operatorname{L}^p(T)$. The Lebesgue dominated convergence theorem with the estimate

$$\begin{split} & \mathcal{O}(f(re^{it}), f^{*}(t))^{p} \leq 2^{p} \mathcal{O}(f)^{p}(re^{it}) + 2^{p} \mathcal{O}(f^{*})^{p}(t) \leq 2^{p+1} M_{R}^{n} (\mathcal{O}(f)^{p})(t) \\ &= 2^{p+1} M_{R}^{n} (\mathcal{O}(f))^{p}(t), \end{split}$$

again yields that

$$\int_{T} \sigma(f(re^{it}), f^{*}(t))^{p} dt \rightarrow 0 \quad as \quad r \rightarrow 1-0.$$

REMARK. Since $\mathcal{O}(f) \equiv 1$ for $f \equiv (e^2 - 1)/(e^2 + 1) \in \mathbb{H}^p_{\sigma}$, it follows that $1 \leq a_{\sigma}(p,R)$.

REFERENCES

- Duren, P. L. <u>Theory of H^D Spaces</u>, Academic Press (Pure and Applied Mathematics, Volume 38), New York and London, 1970.
- Gårding, L. and L. Hörmander. Strongly subharmonic functions, <u>Math. Scand.</u> 15 (1964) 93-96; Correction, <u>ibid.</u> 18(1966) 183.
- 3. Hardy, G. H. and J. E. Littlewood. A maximal theorem with function-theoretic applications, <u>Acta Math</u>. 54(1930) 81-116.
- 4. Radó, T. <u>Subharmonic Functions</u>, Springer-Verlag (Ergebnisse der Mathematik und ihrer Grenzgebiete, 5. Band), Berlin-Göttingen-Heidelberg, 1937.
- Yamashita, S. On some families of analytic functions on Riemann surfaces, <u>Nagoya</u> <u>Math. J.</u> 31(1968) 57-68.
- 6. Yamashita, S. Hyperbolic Hardy class H¹, <u>Math. Scand.</u> 45(1979) 261-266.