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ABSTRACT. The spectrum of a distribution function is related to the quasi-analytlclty

of a class of functions {C M(j)I where M(j) is a multisequence of positive numbers.

For a regular multlsequence, a result on the uniqueness of characteristic function

decomposition is given.
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i INTRODUCTION.

A general principle formulated by N. Wiener, that a function and its Fourier

transform cannot both be very small at infinity, has been the origin of important but

quite different results in the fields of Complex Analysis and Probability Theory. In

this note, we give some results connecting these two fields and an example to illus-

trate this connection.

Two fundamental theorems on the above principle are recalled below. They both

rely on the classical Paley-Wiener Theorems. Theorem i.i by Ingham and Levlnson [i]

has been used by various authors to establish results in Probability Theory, concern-

ing the spectrum of a distribution, unique factorization of characteristic functions,

etc. (see e.g. [2], [3]). Theorem 1.2 by S. Mandelbrojt [4] has seen many applicat-

ions in Analysis, especially in the theory of quasi-analytic and non-quasi-analytic

functions (see e.g. [4], [5], [6]).
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THEOREM i.i. Let G(u) e L(-,) and suppose that

F(x) l-i- I G(u)-iUxdu"
2

Let G(u) O(e-e’u)) where e(u) is a non-decreasing positive function such that

du(u)
u
2

Then F(x) cannot be equivalent to zero in any interval unless it is equivalent to

zero over

THEOREM 1 2 If C(u) is a non-decreasing function on [0, 2
u

then l’d, an entire function F(z) not identically zero such that

6lyl c(Izl)lF(z) -<

A number of deinltions and other results to be used later are recalled below.

A point x is called a point of the spectrum of a probability distribution F if

V6 > 0, F(x + 6) > F(x- 6). The characteristic function f of F is defined by

f(t) _= eitxdF(x) and the following theorem can be found in [2], under a slightly

different form.

THEOREM 1.3. Let @(t) be a non-negative non-decreasing function for t > 0 and

let f(t) be the characteristic function of a distribution F such that f(t)=(e-@(Itl))
for large Itl Then F has (_oo,) as spectrum if and only if the integral I- @.(t) dt

2
t

diverges.

The proof of the above result is essentially based on Theorem i.i and various

properties of the Rademacher Series (see [2]).

2. MAIN RESULTS.

Let {M(j)} be a multisequence of positive numbers where (j) (Jl’ Jm)’ Jk
m

k=I7" jk and denote by C{M(j)) thebeing an integer > 0 1 -< k < m. We set

class of C complex-valued functions defined on 1 such that

Jl Jm fJl <

8x
I xm

where f and Bf are positive constants which depend only on f. Following Lelong [7],

we define the class C{M(j)} to be quasi-analytic if it does not contain functions with
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compact support. Various properties of these classes have been obtained (see [7],[8],

and [9]) and differ from the classical one-dlmensional case.

THEOREM 2.1. Let F be a probability distribution function with characteristic

function f and {M(j)I a multisequence of positive numbers such that.

sup {llt;(J)l f(t) lloo/M(j < oo.

Then F has (_oo,=) as spectrum if and only if C{M(j)} is quasi-analytic.

PROOF. We begin by extending the ideas of Valiron points and half-planes to

several dimensions.

Let {M(j)} be a multisequence of positive numbers where (j) (Jl Jm)’ Jk
inf {M(j)} and suppose that {p} grows morebeing an integer > 0. We set p I(J)I=P

rapidly than any function of the form rP,r > 0.

In R
m+l

s andlet consider the points with co-ordinates xI J l Xm Jm
y -log M(j), called the Valiron points of the sequence {M(j)}, in the lower half-

r
p

space of Rm+l. Since-- 0, r > 0 and a > 0, there exist at most a finite numberp
> a. A fortiori, f(r)of indices p such that p log r- log p (rl, rm) and

a > O; there are at most a finite number of Valiron points such that

Jk log r
k log M(j) a. (2.1)

Now fix (r) and fix a > 0. Let’s consider the hyperplane in Rm+l determined by the

equation:
m

Y k-- xk log r
k
+ a.

It intersects the y-axis at the point with ordinate a and the x-axis at the

a
point

log r with i < % < m. By (2.1), b b(r
I rm) such that no Valiron

point is above y =-7 x
k log r

k
+ b(rl, rm) and, at the same time, at least one

Valiron point is on the hyperplane itself. Hence, for Valiron points, we have

Jk log r
k
+ b(rI, rm) _> -log M(j)

k=l

or

b(rl, rm) >-sup {_ Jk
(j) k:l--

log r
k log M(j)};
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in fact

where

b(rI, rm sup {log
(j)

Jl J
rI r

m

M(j)

log T(rl, rm

Jl Jm
rI

r
m

T(rl, rm) sup {
M

(j) (j)

m

For (r) (rl, rm) given, the hyperplane H((r)) with equation

m
y r.. xk log r

k + b(rl, rm) is called the Valiron hyperPlane of the sequence

{M(j)} at the point (r) Rm.
We set r

I r^z rm r and consider the Valiron hyperplanes defined on the

m
main diagonal of R whose equations become y -log r =E x

k
+ b(r). Here

m kl

b(r) log (r) where (r) T(r, r, r). We can see from the above arguments

that b(r) is a positive non-decreasing function of r > 0.

b (r)
Suppose now that C{M(j)} is quasi-analYtic. By [8] we know that dr

i r
diverges.

Then

Let sup
(J)

M(j)If(t)l < Y

and hence

If(t) 0(I/y(Itl) as t > 0%

Using Theorem 1.3, F then has (_oo,oo) as spectrum. Conversely, suppose that F has

b(t)
dt diver-(_oo,) as spectrum. Since If(t) 0(e-b(Itl)) t , the integral ’t2

ges again by [8], this is a sufficient condition for the class C{M(j)} to be quasi-

analytic.

For one dimension, we have the following example and corollary.

EXAMPLE. If we associate to the Cauchy distribution (with density

P(X)
02 2]

< x < , @, D real, 8 > O) the sequence Mj
[ + (x ) e

we can easily verify that the above theorem is satisfied.
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COROLLARY Let {M }oo be a sequence of positive numbers such that M
0

I
J j=O

M2n < Mn-i Mn+l with n 1,2,3,..., and F is a distribution fuctlon with characteristic

function f such that sup I ItJf(t) llo/M} < oo. Then F has (_oo,oo) as spectrum if and
j>_0

Mn_l
only if Y. oo.

n=l M
n

PROOF. By the classical Denjoy-Carleman Theorem (see [9]), if M. is logarithml-

tally convex, the divergence of the integral dt is equivalent to the diver-

Mn_I 1 t
gence of the series F.

n=l M
n

3. UNIQUE FACTORIZATION.

An interesting property of distribution functions is that the cancellation law

does not hold in general, i.e. F
I * F

2
F
1 * F

3
does not imply F

2
F3. Gnedenko [I0]

has given examples of characteristic function f such that f(t) fl(t) f2(t)
fl(t) f3(t) with f2(t) # f3(t).

For a distribution function F, we define F*(x) F(-x), Vx and, for a > 0,

(A
a F)(x) F(x + a) F(x a).

We now consider a more specific multisequence called regular. For {M(j)
associate the marginal multisequence {Mj)} defined by

Mj) M l(j)l, 0, M0, I(J)l, 0, 0

}, let’s

M0, 0 (J)l, V(J)

DEFINITION. A multisequence ..{M(j)I is regular if:

M(j)
i) M(j) > M*j V(J), with sup {(

(j) M
(j)

<

2) {C Mj)} is quasi-analytic with each marginal sequence

M
0 M

00 0 0 of the form 0 (!) [()] where

m
F. i and (x) is a continuously differentiable function (depending on the mar-

k=l k

ginal sequence) with (0) 1 ’ (x) > 0 and x.’.(XL)
(x) 0(i) as x oo.

REMARK. The class of regular multisequence, which is obviously not empty, was

introduced first by Hirschman [ii] for one dimension, to generalize the m-th logarith-

mic sequence.
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THEOREM. Let C{M(j)} be a regular class of functions and f the characteristic

function of F. Then there exists a continuous non-decreaslng function (t) for t > O,

such that

l) If f(t)= 0(e-ltl/(Itl)), then F has (_oo,o) as spectrum

2) If (AaF*)(u) 0(e-Itl/([tl)) for some a > 0 and f admits a decomposi-

tion f(t) fl(t) f2(t), then f2 is uniquely determined by f and fl"
PROOF. We first show that, for a regular multisequence {M(j)}, the function

rb*(r) associated with the marginal multisequence {Mj)} is such that b*(r) ’(r)
r + where (r) is a continuous, non-decreasing function with 9(0) > 0.

with

We have

P* linf(J)l:P {Mj)} (p!) [i (p) ]p (p!)
m

m
[m(p)]P p! [(p)]P where : k1 .

x’ (x__) o(1) as x .We also have %<0) l, (x) > O, and
(x)

Following Hirschman [ii], write

as

(3.1)

b*(r) max {p log r- p! p log (p)}
p>0

(3.2)

and let p*(r) be the integer for which the maximum is attained. If we now treat p as

a continuou ,riable in G(p) p log r- p! p log (p), the maximum would be

attained as ), the solution of dG(p) 0. Using Stirling’s formula
dp

dp! % pP e-p, we have (log F(p + i)) log p + o(1) and, therefore,

dG(p)
log r log p log (p) + (I) by the properties of .

dp

Hence,

log r log s(r) log (s(r)) + (i) (3.3)

and r % s(r) ", (s(r)).

Putting (3.3) in (3.2) when p p*(r), we can obtain

b*(r) p*(r) [i + (i)] % s(r)

r
and so b*(r) %

(s(r)) for r > 0.
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By the non-decreasing property of and s, there exists a continuous function

r(r), non-decreaslng with (0) > 0 such that b*(r) % (r) for r > O.

Now let g sup {( < and n
Mj)

We have l*(rir) -< t*(r) by ’eorem 2 of [8] while H(j) >- Mj) implies l(r)_< l(r).

M(j) I (J)l > M (j) implies %*(nr) < %(r) by (3 I).On the other hand, Mj) (j)

b(r)
dr diverges and by theNow, Mj) being quasi-analytic, the integral 2

above inequalities, implies the divergence of I b()r dr. If f(t)

then afortiori f(t) =O(1/X(Itl)) and by Theorem 1.3, F has (_oo,) as its spectrum.

The second part of the theorem follows from a result by E. Lukacs ([3, Theorem

combined with the regularity of C{M(j)}. The proof, based on classical results of

Khintchine, the inversion formula, and Parseval’s Theorem, follows closely Lukacs

(see [3]).
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