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ABSTRACT. A proof is given for the fact that the product of two self-adjoint opera-

tors, one of which is also positive, is again self-adjoint if and only if the product

is normal. This theorem applies, in particular, if one operator is an orthogonal pro-

jection. In general, the posltlvity requirement cannot be dropped.
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1. INTRODUCTION.

Products of self-adjoint operators in Hilbert space play a role in several dif-

ferent areas of pure and applied mathematics. We shall give three examples:

a. In the simplified Hilbert space model of quantum mechanical systems, measur-

able quantities a,b,... (location, momentum, etc.) are represented by self-adjoint

operators ("observables") A,B,... (Mackey [1,2]). The state of the system itself is

given by the so-called "statistical operator". W, which is positive with trace (W) 1

and also named the "density operator" of the system. This probabilistic parlance

stems from the intrinsic stochastic nature of quantum mechanics: property a, say,

with representing operator A, will be found in the system not with certainty, but with

a probability given by

PW (a) trace (WA),

and by measuring a, the original system changes into a new one whose density or state

is given by

AWA
trace (WA)
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(see Lders [3], and for a recent discussion, Bub [4]). W’ determines the conditional

probability of "b given a" via

Pw(bla) trace (W’B).

If A and W commute, A is called "objective" with respect to W, and WA is a new observ-

able of the system. If A and B commute, AB represents the property "a and b"-.

b. Every bounded operator T may be written T A + iB with A and B self-adjolnt.

If T is already known to be seml-normal, Putnam [5, p. 57] proved that normality and

self-adjointedness of AB are the same.

c. Radjavi and Rosenthal [6] proved that the product of a positive and a self-

adjoint operator always has a non-trivlal invariant subspace. It has not yet been

decided whether the product of two self-adjoint operators or, more generally, of a

positive and a unitary operator has an invarlant subspace (this is the famous "invarl-

ant subspace problem").

The starting point for the discussion in the present note is the following theo-

rem (all operators are supposed bounded).

2. MAIN RESULTS.

THEOREM. Let A and B be self-adjoint, and A or B be positive. Then AB is self-

adjoint if and only if AB is normal.

PROOF. Of course the "only if" implication is obvious. As to the converse, we

use the well-known Fuglede-Putnam theorem [7,8] which states the following: For nor-

mal operators N
l

and N
2

and arbitrary operator A, if

AN
I N2A

then

(2.1)

AN
1 N2A (2.2)

* in (2 I) Then by (2 2) A2B BA
2

To prove our result, set N
1

BA and N
2

AB N
1

A
2

i.e commutes with B. Since A is positive, A is the square root of A2 and hence A

commutes with B. (If B is positive, exchange the roles of A and B).

This theorem characterizes the self-adjoint operators in the class of normal

operators; it is known that every self-adjoint operator T can be written in its polar

decomposition as a product T AB with A positive and B unitary. Here B is even self-
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adjoint, because T is (Rudin [9, p. 315] Proof (b) of Theorem 12.35). Our theorem

states the converse: all operators T AB with A positive and B self-adjolnt are al-

ready self-adjoint

COROLLARY i. Let T A + iB be a bounded operator in its canonical form with

self-adjoint A and B. If AB is normal and A or B is positive, then T is normal.

COROLLARY 2. Let B be self-adjoint and A the orthogonal projection onto a closed

subspace M. Then M reduces B; i.e., BM M and BM
+/-

M
+/-

if and only if AB is normal.

PROOF. M reduces B iff AB BA, i.e., AB is self-adjolnt. Since A is positive,

our theorem applies.

COROLLARY 3. Let A and B be orthogonal projections. Then the comutatlvlty re-

lation AB BA is equivalent to ABA BAB.

PROOF. AB BA means that AB is self-adjolnt, whereas ABA BAB expresses nor-

mality of AB.

The fact that ABA BAB implies AB BA may also be seen directly by evaluating

(ABA AB)*(ABA AB) 0.

We give now an example showing that the positivity requirement in the theorem

cannot be dropped: the self-adjolnt matrices

A

fulfill AB -BA, so that AB is normal but not self-adjoint. The reason, according to

our theorem, is that neither A nor B are positive. From this we conclude the follow-

ing weakening of the theorem;

COROLLARY 4. Let A and B be self-adjoint, and A or B be positive. If AB BA#0,

then also AB + BA # 0. (If the commutator of A and B is non-zero, then their anti-

commutator is also non-zero).

On the other hand, the assumptions of the theorem are not necessary: If B and AB

are self-adjoint, it is not necessary that A even be normal: take B as above and

What about the other partial converse of the theorem? If A is positive and AB self-
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adjoint, does it follow that B is also self-adjoint? Not in general, but if A is in-

vertlble and B is normal: from self-adjolntness of AB follows

AB (AB)* B’A, (2.3)

therefore, by Fuglede-Putnam,

AB* BA, (2.4)

hence A2B AB*A BA2 and as above AB BA.

Since A is invertlble, we conclude B B*. We can even do without assumptions on

AB (besides (2.3)) if instead of the positivlty of A we require the following (Beck-

Putnam [I0]): If A is invertible, with the polar decomposition

A PU (P > 0, U unitary),

and if the spectrum of U is contained in some open seml-clrcle {ei: < < u + },

then every normal operator B satisfying (2.3) must be self-adjolnt. The proof uses

the spectral resolution of U and the fact that the set {ein%} is complete on the inter-

val 0 _< -< 2 (for details see [i0, p. 214]).
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