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ABSTRACT. A proof is given for the fact that the product of two self-adjoint opera-
tors, one of which is also positive, is again self-adjoint if and only if the product
is normal. This theorem applies, in particular, if one operator is an orthogonal pro-
jection. In general, the positivity requirement cannot be dropped.
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1. INTRODUCTION.

Products of self-adjoint operators in Hilbert space play a role in several dif-
ferent areas of pure and applied mathematics. We shall give three examples:

a. In the simplified Hilbert space model of quantum mechanical systems, measur-
able quantities a,b,... (location, momentum, etc.) are represented by self-adjoint
operators ('observables") A,B,... (Mackey [1,2]). The state of the system itself is
given by the so-called "statistical operator". W, which is positive with trace (W) =1
and also named the "density operator" of the system. This probabilistic parlance
stems from the intrinsic stochastic nature of quantum mechanics: property a, say,
with representing operator A, will be found in the system not with certainty, but with
a probability given by

Pw(a) = trace (WA),

and by measuring a, the original system changes into a new one whose density or state

is given by

W o= AuA
trace (WA)
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(see Luders [3], and for a recent discussion, Bub [4]). W' determines the conditional
probability of "b given a" via

Pw(bla) = trace (W'B).

If A and W commute, A is called "objective" with respect to W, and WA is a new observ-
able of the system. If A and B commute, AB represents the property "a and b".

b. Every bounded operator T may be written T = A + iB with A and B self-adjoint.
If T is already known to be semi-normal, Putnam [5, p. 57] proved that normality and
self-adjointedness of AB are the same,

c. Radjavi and Rosenthal [6] proved that the product of a positive and a self-
adjoint operator always has a non-trivial invariant subspace. It has not yet been
decided whether the product of two self-adjoint operators or, more generally, of a
positive and a unitary operator has an invariant subspace (this is the famous "invari-
ant subspace problem').

The starting point for the discussion in the present note is the following theo-
rem (all operators are supposed bounded).

2. MAIN RESULTS.

THEOREM. Let A and B be self-adjoint, and A or B be positive. Then AB is self-
adjoint if and only if AB is normal.

PROOF. Of course the "only if" implication is obvious. As to the converse, we
use the well-known Fuglede-Putnam theorem [7,8] which states the following: For nor-

mal operators N, and N, and arbitrary operator A, if

1 2
ANl = N2A (2.1)
then
* _ gk
ANT NDA. (2.2)
To prove our result, set N, = BA and N, = AB = N} in (2.1). Then, by (2.2), A%p =BAZ;

i.e., A2 commutes with B. Since A is positive, A is the square root of AZ and hence A
commutes with B. (If B is positive, exchange the roles of A and B).

This theorem characterizes the self-adjoint operators in the class of normal
operators; it is known that every self-adjoint operator T can be written in its polar

decomposition as a product T = AB with A positive and B unitary. Here B is even self-
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adjoint, because T is (Rudin [9, p. 315] Proof (b) of Theorem 12.35). Our theorem
states the converse: all operators T = AB with A positive and B self-~adjoint are al-
ready self-adjoint!

COROLLARY 1. Let T = A + iB be a bounded operator in its canonical form with
self-adjoint A and B. If AB is normal and A or B is positive, then T is normal.

COROLLARY 2. Let B be self-adjoint and A the orthogonal projection onto a closed
subspace M. Then M reduces B; i.e., BM ¢ M and Bt < M' if and only if AB is normal.

PROOF. M reduces B iff AB = BA, i.e., AB is self-adjoint. Since A is positive,
our theorem applies.

COROLLARY 3. Let A and B be orthogonal projections. Then the commutativity re-
lation AB = BA is equivalent to ABA = BAB.

PROOF. AB = BA means that AB is self-adjoint, whereas ABA = BAB expresses nor-
mality of AB.

The fact that ABA = BAﬁ implies AB = BA may also be seen directly by evaluating
(ABA - AB)*(ABA - AB) = 0.

We give now an example showing that the positivity requirement in the theorem

cannot be dropped: the self-adjoint matrices

<-1 i) (0 l)
A = , B=
-i 1 1 0
fulfill AB = -BA, so that AB is normal but not self-adjoint. The reason, according to
our theorem, is that neither A nor B are positive. From this we conclude the follow-
ing weakening of the theorem;

COROLLARY 4, Let A and B be self-adjoint, and A or B be positive. If AB - BA#0,
then also AB + BA # 0. (If the commutator of A and B is non-zero, then their anti-
commutator is also non-zero).

On the other hand, the assumptions of the theorem are not necessary: If B and AB

are self-adjoint, it is not necessary that A even be normal: take B as above and
i 1
A= )
1 -i

What about the other partial converse of the theorem? If A is positive and AB self-
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adjoint, does it follow that B is also self-adjoint? Not in general, but if A is in-
vgrtible and B is normal: from self-adjointness of AB follows
AB = (AB)* = B*a, (2.3)
therefore, by Fuglede-Putnam,
AB* = BA, (2.4)
hence AZB = AB*A = BAZ, and as above AB = BA,
Since A is invertible, we conclude B = B*. We can even do without assumptions on
AB (besides (2.3)) if instead of the positivity of A we require the following (Beck-
Putnam [10]): If A is invertible, with the polar decomposition
A =PU (P 2 0, U unitary),
and if the spectrum of U is contained in some open semi-circle {eiu: a<p<a+ul,
then every normal operator B satisfying (2.3) must be self-adjoint. The proof uses

the spectral resolution of U and the fact that the set {einx}is complete on the inter-

val 0 < A < 2t (for details see [10, p. 214]).
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