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ABSTRACT. This note presents a proof of Gordan’s Theorem over general closed, conve

cone domains which follows in a natural way appealing to the standard definitions of

closed convex cones and their respective polar cones.
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I. INTRODUCTION

Solvability theorems or theorems of the alternative for problems involving

linear system of equations has played a major role in mathematical programming,

and linear analysis, (Craven [I], Luenberger [2] or Mangasarian [3]).

Mmngasarian [3] presents a rigorous development of the classical theorems

of alternatives, see Chapter 2 in [3]. Many theoretical aspects in mathemati-

cal programming appeal to various theorems of the alternative in establishing

certain optimality conditions and duality properties.

Ben-lsrael [4], and Berman and Ben-lsrael [5] extended the classlcal

theorems of the alternative to problems with linear equations over polyhedral

cone domains. Thus extending the classical formulations over nonnegative

orthants as originally presented by Gordan [6] i.e., problems involving a

linear system over inequalities (> 0). In particular, Ben-Israel proves a
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certain theorem, (Theorem 2 in [4]), which is utilized to establish extensions

of the classical theorems of the alternative of Gordan, Motzkin, and Slater to

problems formulated with linear equations over polyhedral convex cone domains.

Ben-Israel underscores the fact that Theorem 2 cannot be used to generalize

these results to general (nonpolyhedral) closed convex cones; see page 134 in

[4]; hence, restricting the extension of the theorems of the alternative to

problems involving general convex cone domains. Berman and Ben-Israel (cor.

1.5 in [5]), however, were able to establish a generalized Gordan’s Theorem

over general closed convex cone domain by appealing to Mazur’s Theorem

(Bourbaki [7]) or the Hahn-Banach Theorem (Schaefer [8]).

Craven (pg 31-33 in [i]), presents several theorems of the alternative

over general closed .cone domains however, a generalization of Gordan’s

Theorem is not explicitly given in this development. Therefore, the purpose

of this note is to present a proof of Gordan’s generalized theorem appealing

only to the standard definitions of cones and their respective polar cones;

hence, differing from the proof given by Berman and Ben-Israel in [5].

2. ALTERNATIVE PROOF

An alternative proof of Gordan’s theorem over arbitrary convex cone

domains is now presented over finite dimensional space. Consider the

following definitions

Definition I. C is a cone in En if for any vector y e C and k > 0 we

have that ky e C

Definition 2. A cone C is pointed if C N (-C) {0}

Definition 3. C will denote the polar cone of an arbitrary cone C in

En; that is

* {y* E
n *,

C IY y >_ 0 for all y C} (2.1)

Gordan’s theorem over convex cone domains, Lemma 2 below, is established

appealing to the following lemma:
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Lemma I. Let C be a closed convex cone in E
n

Then Int (C*) @ iff

C is a pointed cone.

Proof: Berman and Ben-Israel ([5], Lemma 0).

Lemma 2. (Gordan’s Theorem for Arbitrary Cone Domains). Let M be any given

nonvacuous m x n matrix, with C any arbitrary pointed, closed convex cone

in En, then exactly one of the following systems is consistent;

(i) Mx 0 for some x e C x # 0

or

,
Em(ii) M y g Int(-C ), y E

Proof: (Not (li) implies (1)).

Let S {zlz M y, y Em} S 2 {zlz g Int(-C*)}, then S n S
2

and, reover, S 1 and S 2 are convex sets. Since S and S
2 are two

disjoint convex sets in En then there exists a hyperplane v (nonzero)

such that

v z _> v z2 for all zI e Sl; for all z 2
e S 2, (the closure of S 2)

Hence,

ETMv M y _> v z2
for all y e for all z 2

g S
2

(2.2)

Assume v C then there exists z^z 6 S
2

such that

,
v z2>0

* ETM -* kzHowever, for any given y there exists z
2

e S
2

where k > 0

such that v z
2

> v M y which violates (2.2). Hence, it follows that v 6 C

Now letting 0 then v M y > v z 0 hence, v M y 0 However,

letting y -Mv we have that -v M Mv > 0 Therefore, Mv 0 v C

(v O) hence, (i) holds.

To show now that (ii) implies not (i)
, , , ,

Let y be such that M y g Int(-C ), and assume there exists x e C
, , ,

such that Mx 0 x # 0; then necessarily y (Mx) 0 A contradiction,

, , , , ,v ,
since M y Int(-C with x e C (x # 0), implies that x (M y < 0

Hence, the result follows.
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3. CONCLUDING REMARKS

Lemma 2 requires that the cone C be closed, convex, and pointed; hence,
,

by Lemma Int (-C) Clearly, relaxing this requirement could result

in the inconsistency of both (i) and (ii) in Lepta 2.
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