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ABSTRACT. This paper extends the operational calculus of Meller for the operator

-e d +i d
Be t t d- to the case where e e (0, oo). The development is la

Mikuslnskl calculus and uses Meller’s convolution process with a fractional derlva-

tlve operator.
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1. INTRODUCTION.

Familiarity with integral transforms of distributions is assumed This paper

is accessible to readers familiar with references [1-3]. The generalist reader

interested in this area may start with these references.

Meller [4], [5] constructed an operational calculus for the operator

Be t-e t te+l d-d with -i < e < 1 by embedding it in a field of convolution

quotients. The convolution process was given by the formula:

d xf(t)*g(t) P(l + e)P(l e) dt
0

(t )-ed
0

i e efx dx (1 x) (x)g[(1 x) (E n)]
0

d d
This calculus reduces to Ditkin’s calculus [6], [3] for t when e 0.

Recently, Koh [7], [8] and Conlan [9] extended Meller’s calculus to the case

(1.1)

e e (-i, o). A modified convolution process was used which yields results analogous
to Meller’s. In the present work, we give a direct extension of Meller’s calculus

1 d I1 (t )-d in (i.i) as a fractional derl-by treaing the operator F(I e) dt
0

vatlye.
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Specifically, we let n be the least integer greater than > O. For any n-

times differentiable function f(t), the th-order derivative of f(t) is:

Df(t) D
n In- f(t) (1.2)

d
iwhere D is and is the Riemann-Liouville integral of order > 0 given in

Ross [i0] by

J (t 6) f()d. (1.3)lf (t) F() 0

It is easy to see that I satisfies the semigroup property

ii= i+

but D does not. Thus DaD in (2.1) below cannot be written D+I.
(1.4)

2. THE CONVOLUTION QUOTIENTS.

Let _> 0 be a fixed real number. Let C denote the linear space of infinite-

ly differentiable functions on [0,oo). For every pair of functions (t) and (t)

in C define their convolution by

DtD It II1 N(I x) (xD)[(l x)(t N)]dxdN (2.1)(t)*(t) F( + i) 0 0

From this definition, the following properties are clear: (1) C is closed under

convolution, (ii) convolution is bilinear on C x C (iii) convolution is distri-

butive with respect to the usual addition of functions. It also follows immediately

that equation (2.1) specilizes to Meller’s convolution for < i and to Ditkin’s

for 0. Not so immediate are the following properties.

PROPOSITION I. Convolution is commutative.

V
PROOF. Let x i - and N t t in (2.1) and noting that the Jacobian

(x) i for all t g (0,) we have(v,O
1 [lit vq v v

(t)*(t) F(a + i)
DeDtD

0o(t t)a( [(i )(t t)][ (t)]dvd

1 t i
F( + i)

DDtD J v(l )(v)[(l- )(t- v)]ddv
00

(t)*(t). q.e.d.

PROPOSITION 2. For every complex nber %, and any #(t) e C %*(t) %(t).

PROF. l*(t) F(e + i)
DDtD (i- x)l(xN)dxdN

0 0

Dta+l i (i x)a(xt)dxF(a + i)
0
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r( + 1)

r(+ l)

DaD t u)(u)du
0

t
Dnln- (t u) (u)du

0

%Dnln-ala(t) %(t).

The last step follows from (1.4) and (1.2). q.e.d. In view of Proposition 2, there

is no distinction between constants and constant functions in our calculus.

PROPOSITION 3. Convolution is associative.

PROOF. A direct calculation shows that, for nonnegative integers q and r,

tq,tr q!r!r(q + + l)r(r + + i). t(q + r)!r( + l)r(q + r + + i)
q+r

(2.2)

Hence on using (2.2) again,

tP,(tq,tr p!q!r! r(p+a+l)!r(q+a+l)r(r+a+l} tp+q+r
(p+q+r) F (0i) F (p+q+r++l) F (+i)

(tp , tq) , t
r (2.3)

Due to the bilinearity of our convolution, equation (2.3) still holds for polynom-

ials. Our proposition follows from Weierstrass’s Approximation Theorem and the

fact [9] that the space of C functions with compact support is dense in C q.e.d.

PROPOSITION 4. C has no zero divisors, i.e. if (t) and (t) belong to C

and (t) * (t) 0, then either (t) 0 or (t) 0.

PROOF. (t) * (t) 0 implies that

(t ) -F C_l x) (xr])[(l x)( n)]dxdN
0 0 0

tn-i tn-2
C1 (n i)!

+ C2 (n 2)’. + + Cn (2.4)

As t - O, Cn O. Now, by an argument leading to (2.3), we see that, if C
i

# 0 for

some i, then (t) and (t) have to be polynomials. But if they are polynomials,

the left side of (2.4) will be of degree at least n. Hence, the right side of (2.4)

has to be zero. A similar argument, together with Titchmarsh’s Theorem 2], yields

it ll rlc(1 x)aq(xrl)[ (I x)(t ri)]dxdr] O.
0 0

(2.5)
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To complete the proof, let x z and t v in (2.5). We then have

Ivl -(’r y) (y.)q[(’r- y)(v- .)]dyd- Oo
0 0

By a theorem of kuslnsi and Ryll-Nardzewski [ii], it follows that z(yz) 0 or

y(yz) 0. Thus, (t) 0 or (t) O. q.e.d.

The above properties establish C as an integral don der the operations

of addition and convolution as multplcaton. By virtue of Proposition 2, the

multpllcatve dentlty for C s the nber i. We may now extend C nto the

field F of convolution quotients consisting of equivalence classes of ordered pairs

(,) of elements n C with # 0. The equivalence relation is gven by

As usual, convolution quotients are called operators 2 and are denoted by

Operators of the form .(t) constitute a subring of F isomorphic to C through

the canonical maps (t) -+ (t)

3. AN OPERATIONAL CALCULUS.

We now show that the operator B belongs to F. First, note that a right

inverse to B is given by

A na(n)dnd;
0 0

i.e. B A , for g C If we restrict the domain of B to { g I(0) 0},

then A is also a left inverse; i.e., ABa .
t

PROPOSITION 5 For any (t) g C * (t) A(t)
+i

PROOF. We shall assume that a is not an integer. Otherwise, the proof is

more straightforward, obviating the use of fractional integrals.

t
* qb(t)

i lt ll n( c (I- x)(t- )
e + 1 F(o + i)

DDtD
)u )u

(i- x) (x) o + 1 dxdn

1 DeDtD (t n) (n- )a+ l($)ddnF(e + 2)
0 n2 0

F(a + 2)

F( + I)

Dc{ - (rl-$) ()ddn + (t ) ()d}
On 0 0

ft frl otD
a i

(r- ) ()ddno- o
(3.1)
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Let () In() where n least integer greater than a. Then (3.1) becomes

it i
-n

t
* (t) D

i )
+ i

0 0
F( n + i’) ()dd

It )n-a-i lu i
a-n

D
n _(t u 1 .- )

0 (n a) 0 0
F(a n + i) ()ddNdu

D
n It It() rl-l(rl )c-n(t rl)n-tdrld.

F (n-e+l) F (a-n+l)
0

The inner integral reduces, via the Beta function, to {()-n-l}F(-n+l)F(n- ).

Thus,
t
+ i * (t)

n O.
0

)(J){(-- 1}d

Dn fl
n-

0
t(wt)(w-n l)dw

-n
(w -i

0
n-

(wnto(wt) + nwn-llO(wt))dw

ft 1
[( t ) ()n]($)d

O n c

[( ) ()hi( . (u)dud
0

-It ( [( )
0

-e 1]d

(x() rl
-c-I

drld
0 0

$()ddr A(t). q.e.d.

This result implies that operators of the form (t)_ with #(0) 0 may be identifiedt

with locally integrable functions f(t) such that Af(t) < for every t > O. Indeed,

..O(t).t f(t) e Lloc[0, oo) iff O(t) t*f(t) (e + 1) A f < oo, Vt > 0.

The next result follows from Proposition 5 and Equation (2.2) by induction.

PROPOSITION 6. Let k be a positive integer. Then, for any #(t) e C

kn!t
(k + n) lk!

Let V be the operator

* 0(t) Ak(t) where Ak(t) A(A(-.- (A))).
k-times

+ i
and Vk the k-times application of V.t
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PROPOSITION 7. For any 2k times differentiable function (t),
k

j--1
(3.2)

Ba(t) + (0). ThusPROOF. (t) ABa(t) + (0)
a + I

V(t) Ba(t) + (0)V and (3.2) is proved for k i. Suppose now that (3.2) is

true for k m- i. Then for any 2m times differentiable function (t),
m-i

m-lVine(t) V(Bo (t) + Z Bm-l-Jc (1)(t) lt_+ Vj)
j=l

m-i

B Bm-1 Bm-1a a *(t) + *(t) It+O+ V + Z Bm-l-J*(t) .^+ Vj+l
"t-j=l

m

B
m

]--1

The proposition follows by induction.

A number of operational formulas such as those in Theorems 5 and 6 of [7] may

be generated by using (3.2). The proofs are similar, mutatis mutandis. A generali-

zation of Theorem 5 of [7] is obtained by parametric differentiation.

PROPOSITION 8. V P( + I) tin(at)- --i
(V a) m+l m! la+m(2k/)

&+m
V F(a + I)

tm(at)--T" (2m+l m! J&+m(V + a)
where l(x) and J(x) are Bessel functions of order

RHARKS. i. All the results of Meller are extendible to the case (0,)
via the metho given in this paper.

2. The operational calculus may be applied to certain time-varying systems

and to Kratzel’s problem as done in [8].

-n-1 d n+l d
3. In [12], a convolution for the operator A t d- t d--[ where n is

a natural number, is given which is associative, commutative, and distributive with

respect to addition. However, the ring under convolution as multiplication contains

zero divisors.
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