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ABSTRACT. Given N points on a unit sphere in k + 1 dimensional Euclidean space,

we obtain an upper bound for the sum of all the distances they determine which

improves upon earlier work by K. B. Stolarsky when k is even. We use his method,

but derive a variant of W. M. Schmidt’s esults for the discrepancy of spherical

caps which is more suited to the pesent application.
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i. INTRODUCTION.

In this paper we shall consider the following interesting problem of a

geometrical nature: Given a function which measures the distance between points on

the unit spher in m-dimensional space, for what set of N points on the spher is

the sum of all distances between points a maximum, and what is the maximum?

K. B. Stolarsky made important progress towards the solution of this problem in [3].

We efer the rader to his paper for the history of earlier work. He showed (see

Theorem 2 below), for a large class of distance measuring functions, that the sum of

the distances between points plus a measure of how far the set of points deviates

from unifor distribution is equal to N2 c(f,m). Here c is a constant depending
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only on the function f used to measure the distances, and the dimension m of the

space. The sum of distances is lhus maximised by a well distributed set of points.

By examining carefully the estimation of the discrepancy of the point distribution

we shall obtain results which, in certain cases, are very near to being best

possible. The best possible result in this context is that the maximum sum of

distances between N points is

c(f,m)N2 h(f,m)Nl-I/(m-l).

We now introduce some notation following [3] to make the above statements more

precise. Write U for the surface of the unit sphere in k + 1 dimensional

Euclidean space Ek + 1 Let M be a sequence of N points PI’ "’’’PN e U. For
P

a function d on .U U we define

and

S(N,k,Mp) S(d;N,k,Mp) 7. d(Pi,p (i)

S(N,k) S(d;N,k) max S(d;N,k,Mp) (2)

where the maximum in (2) is taken over all sequences M K. B. Stolarsky has shown
P

(see Theorem 2 below) that the sum in (i) plus an integral which measures the dis-

crepancy of M equals a constant depending only on d, when d belongs to a
P

certain class of functions. This class includes the usual Euclidean distance

function

We write Po for the vector (I,0,...0) in Ek +I

vector p e U we write

For a function f of a

I (Tp) d

for the integral of f over the special orthogonal group acting on U. Here T

represents an orthogonal transformation. For a positive function g of a real

variable x [0,I] we define a distance function (which can be shown to be a

metric) by
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P(Pl,P2 P(Pl,P2;g)=I[ I
p2"pO

TPI’Po
g(x)dx dT (3)

for points pl,P2 e U, whenever the integral in (3) exists (i.e. when the inner

integral is intergrable over the orthogonal group). Here p.q denote the standard

inner poduct of two vectors. We call g the kernel of

Let o(U) denote the surface area of U Write do(ql,q2) for the great

circle metric and dl(ql,q2) for the great circle metric defined by (3) with kernel

-1/2(I x2) It is shown in [3] that

dl(ql,q2) <__ do(ql,q2)

Henceforth d(ql,q2) will be the usual Euclidean metric. Our main result is as

follows:

THEOREM i. For k even we have

Cl(k)N2 C2(k)Nl-I/k < S(dl;N.,k < CI(k)N2 C3(k)Nl-i/k (logN)-i

For k even and e > 0 we have

C4(k)N2 C5(k)Nl-I/k )Nl-2/k<S(d;N,k) <C4(k)N2-C6(k e logN )- i-e-l/(k+1

For the right hand sides of (4) and (5) Stolarsky gives

)NI-2/k-i/k2-eCI(k)N2 C3(k,e and C4(k)N
2
-C6(k,e)N

l-3/k-2/k2-e

respectively. For k odd the only improvement we can offer is the replacement of

Ne by a power of log N. "
The main result of Stolarsky’s paper which we use is

THEOREM 2 (Stolarsky). We have

S(o;N,k,Mp) + g(x) (f(Mp,T,x) -No (x))
1

dTdx
N2 II p(p,q)do(q).

2o(U) 2

Here f(M ,T,X) is the number of points of M in the spherical ap:
P P

(4)

(5)

(6)
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{p e U: p. XPo <= x}. Also *(x) denotes the normalized surface aea of a

spherical cap, radius x, and d(q) represents an element of surface area on U

The second temm on the left of (6) is clearly a measure of the discrepancy of M
P

In the second section we shall show how to obtain an estimate for a related measure,

and in our section 3 we shall prove Theorem i.

2. SCHMIDT’S INTEGRAL EQUATION METHOD

In the following, constants implied by the << notation shall depend only on

k. We will make two changes to Schmidt’s method. At one stage (p.69 of [i]) for

k even he uses the inequality 1 + log(l/r) << r-I which suffices to prove his

results, but which is wasteful in our pesent context. This produces the improve-

ment in the exponent of N over Stolarsky’s results. To improve Ne to a power

of log N we do not allow constants introduced to depend on a parameter e. This

enables us to choose as a function of N, whereas Schmidt could only choose

as a function of k and e

As in [i] and [3] (section 4) we let be the nornalized Lebesgue measure on

U (so (u) =i). We write C(r,p) for the spherical cap of all points on U whose

spherical distance from p e U is no more than r. Put (C(r,p)) for the

number of points of M in C(r,p) and D(r,p) N(C(r,p)) (C(r,p)).
P

We write

E(r,s) IU D(r,p)D(s,p) d(p)

We note that

E(r,r) << N2
k
r (7)

The main result of this section

THEOREM 3. We have, for N >_ k even, that

0

(log(Nk) + log(6/r)) E(r,r)dr >> Nl-I/k 6k (8)

We note here that all the results in [i] may be improved by the replacing of (Nk) e

with log(N6 k), or (log(N6k))1/2 That these results are very ncar to being best
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possible is shown in [3].

The idea of Schmidt’s method as we use it here is to show that for 0 < < i,

CIO I l-k-s6
-1 ((l-e)-l+log(6/r)) E(r,r)dr >> r E(r,r)dr (9)

0

where c’ is a suitable small constant. The use of the apparently trivial

inequality

E(r,r) >> llN(C(p,r))II 2

then gives a lower bound

(l-)k+-2 Nl+e/k-2/k

for the right hand side of (9) (see p.82 of [I]). The choice of as

1- (log Nk) -I
then gives (8).

We now outline how to obtain (9), referring to [i] (the reader may also follow the

argument using [2]). Put 8 1 e and write

E(r,s) cos-- cos-- sinl----- sin drds

r+ s<l

(i0)

Then (p.78 of [i] we have

J << E(6r,6r) Ir-s
O0

r+ s<_l

-8
r + s drds

,i i/r- 1

dr E(r’6r) I
0 0

dt Ii tl-ell * tl -s

1
<< I ((l-n)

0

-i + log(l/r)) E (6r,6r)dr

-i
+ log(6/r)) E(r,r)dr.

Now, by Lemma 6 of [i],

(Ii)
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J E(r,r) f(r)dr

where f satisfies a certain integral equation. It is shown in [i], pages 79-81

that

f f (r) f (r). (12)
o ,

Here, in Schmidt’s notation

i -s i -k -fo(r)_ >< r f,(r)_ >< r (13)

as r + O, uniformly in 6. The tracing of the dependence of all the constants in

[i] on e is tedious but straightforward. They are all bounded above and below by

positive constants independent of (this is not true for k odd, but in that

case we get fo(r) >< (i e)-i -r which is good enough to prove the corresponding

result). We see that (9) follows from (ii), (12) and (13), and the proof of the

theorem is complete.

3. PROOF OF THEOREM i

The lower bounds in (4) and (5) are established in [3]; we have included them

here for completeness.

(i) Proof of (4). We have

1

g(x) (f(Mp,T,x) NO (x))

-I

d dx

1

>> (l-x)-1/2 E(arccoslxl, arccoslxl)dx
-i

/2
>> E(r,r)dr.

0

(14)

Now, by (8)
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0

(log N + log(/2r)) E(r,r)dr >> Nl-I/k

-iPut n N Then, by (7),

(log N + log(/2r)) E(r,r)dr << N2((log N) + llognl)n

So, by (15),

k+l

I/2 ’/
E(r,r)dr >> (log N) -I

2

0

(log N + log(/2r)) E(r,r)dr

>> Nl-I/k (log N)-I

o(i).

(15)

With (14) and (6) this proves Theorem 1 for this case.

(ii) Proof of (5) In this case we have (see 4.7 of [3]),

g(x) (f(Mp,T,x) Ng (x)) dT dx >> n E(r,r)dr
-i

This time we choose n by

n N-I/k (log N)-I/(k +i)-.

(16)

Combining (15), (16) and (6) completes the proof of (5) since

O

(log N + log(/2r)) E(r,r)dr o(Nl-I/k)
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