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ABSTRACT. We survey research done on the theory of Walsh series during the decade
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gap Walsh series, growth of Walsh-Fourier coefficients, dyadic differentiation, and
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I. INTRODUCTION.

This article surveys recent results on Walsh series. To avoid duplication of
material appearing in BalaSov and RubinStein [1970], a decision was made to concen-
trate on the decade 1971-1981. References to earlier work will be made when neces-
sary to relate what is herein reported to that which preceeded it. Discussion of
the relationships between this material and the general theory of orthogonal series
has been Teft to those more qualified for this task (e.g., Ul'janov [1972], 01evski?
[1975] and Bockarev [1978b1).

In addition to this introductory section, there remain five sections:

II. Walsh-Fourier Series, III. Approximation by Walsh Series, IV. Walsh-Fourier
Coefficients, V. Dyadic Differentiation, and VI. Uniqueness. These sections have

been further divided into consecutively numbered subsections, each dealing with a
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particular facet of the subject and each carrying a descriptive title to help the
reader quickly find those parts which interest him most.

Section VI is followed by a nearly complete listing of all articles on Walsh
series published during the decade 1971-1981. This listing is ordered alphabetical-
ly and then chronologically. In the course of our narrative these articles will be
cited, as above, by author and by year.

Let rg» Tpse-- represent the Rademacher functions, i.e.,

rk(x) = sgn(sin(2k+1nx)), k>0, x €[0, 1].
Let Wos Wyseeo represent the Walsh functions, i.e., Wg = 1and if k = 2M +...+ 2"
is a positive integer with Ny >Ny >l n, 2 0 then

wk(x) =r (x)...rn (x).

Y
The idea of using products of Rademacher functions to define the Walsh system origi-

"

nated with Paley [1932]. Thus the system {wk} as defined above is called the Walsh-
Paley system. It is interesting to note that this process of putting factors togeth-
er to make an orthonormal system only produces "Walsh-1like" functions. Indeed,

Waterman 1969 ], [1982] proved that if 99> #7>--- is a system of real functions on

n
Y

[0,1] which satisfies [¢ | <1 a.e., n >0, if y = ¢, ...4. for k = 2" +.. .+ 2"
1

defines an orthogonal system with |¢k| =1 a.e., and if kazz M for k sufficiently

large, then there exists a measure preserving map » of [0,1] onto itself such that

wkoA =y a.e. for k = 1,2,... Moreover, the system {wk} is complete if and only if

the map A can be chosen to be a metric automorphism of [0,1].

©

By a Walsh series we shall mean a series of type W = J W where a5, ay,...
k=0

are real numbers. The gfi partial sums of W will be denoted by

ni'l
W = agw,, n>1
n oo Kk

By a Walsh-Fourier series we shall mean a Walsh series of the form W[f] = Z” ak(f)wk
k=0

where ao(f), a](f),... represent the Walsh-Fourier coefficients of some integrable

f, i.e.,
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1
ag(f) = Jo f(thw (t)dt , k >0.

Let Lp, 1 < p < =, represent the collection of measurable functions whose pth
power is integrable over the interval [0,1]. Let L represent the collection of
measurable functions whose essential supremum is finite on the interval [0,1], and
let & represent the collection of functions continuous on the interval [0,1]1. It is
well known that the Walsh functions form a complete orthonormal system in L2.
It is clear that the Walsh functions alternate between +1 and -1 on the interval
[0,1] and it is not difficult to see that the 2"th partial sums of the Dirichlet

kernel D = z:=0wk are always non-negative. These properties penetrate deeply into

the very essence of the Walsh system. Indeed, Levizov [1980] has shown that any
orthonormal system whose functions fn have exactly n sign changes on [0,1], have
range {+1, -1}, and satisfy fn(O) =0, forn=0, 1,..., is the Walsh system. And,
Price [1961] proved that among the orthonormal systems whose functions fn alternate
signs on finer and finer partitions of [0,1], as n » », the Walsh system is the only
one whose Dirichlet kernel has non-negative 2"th partial sums. Thus these two fea-
tures distinguish the study of Walsh series from that of other orthonormal systems.
Another distinguishing feature is that the Walsh functions can be identified

with the characters of a certain compact group, 2“. This group, called the dyadic
group, is the cartesian product of countably many copies of the discrete group {0,1}
endowed with the product topology. Thus a typical element of the dyadic group is a

sequence (x], X2"") with each X = Oor 1, j>1. The map
AMXqys Xpenl) =) x.2'j
1* 72 ja1d

identifies the dyadic group with the interval [0,1] much like the map eix + x iden-
tifies the circle group T with the interval [0,2r]. It turns out that if ¥ ¥poe e
represent the characters of the dyadic group, then ¥y = Wor for k = 0,1,... . Thus
each w o is continuous on the group and satisfies wkok(i)wkox(i) = wkox(§'+ y) for
X, y €2°. This allows one to use theorems about Fourier analysis on the dyadic
group to solve problems about Walsh-Fourier analysis on the interval [0,1]. It also

allows one to pull the dyadic group structure back to the interval [0,1], defining a
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dyadic sum of two numbers x, y € [0,1] by

o

x+y =X +9) =1 Ix -y 127k

where x = (x1, x2,...) and y = (y], yz,...) come from the binary expansion of x and
y and the finite expansion is used when x or y is a dyadic rational. The character
property of W o) means that wk(x + y) = wk(x)wk(y) holds for x, y, € [0,11, k > 0.
In particular, one can almost view ([0,1], ;) as a compact group whose characters
are wg, Wiys... and do most Walsh analysis there. The word "almost" is necessa}y
because A is not quite 1-1. Indeed x'](x) has two distinct images for each dyadic
rational x; one corresponds to the finite expansion and one corresponds to the in-
finite expansion, e.g., A(], 0, 0,...) = (0, 1, 1,...) =1/2. Thus [0,1] is not a
compact group under + unless each dyadic rational is split into two points. (This
point of view was introduced by Sneider [1949].)

Let f be defined on [0,1]. We shall represent the dyadic moduli of continuity

by
o(s, £) = sup  |F(x +h) - f(x)]
0<h<s
x€[0, 11
and

1 .
o (6, f) = sup I j 1(x + h) - £(x)[Pax3'/P,
P 0<h<s 70

1 <p<w, §>0. The function f belongs to Lip(a, LP) for some 0 < a < 1 if there
exists a constant C such that &p(d, f) 5_C6“ for 6 > 0. Similarly f belongs to Lipa
if |f(x + h) - £(x)| < Ch® for h € [0,11.

A most useful distinguishiing feature of the Walsh system is that the 2"th partial
sums of any Walsh series form a martingale. In particular, theorems about martin-
gales contain information about 2"th partial sums of Walsh series. Thus, given any

1

f €L, its (martingale) maximal function is

f*(x) = suplwzn[f, x]| x €10, 1]
n>0

its square function is

s(#) ?/;(wzk[f] - Uk-10FD),
k=1
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and it is well known (see Garsia [1973]) that || f*[|; < /10 || $(f)1]; and
L L
[1s(f) |IL] 5,5]|f*||L]. The function f is said to belong to dyadic LT

f = || S(f
111y = 1Sl S

is finite. Thus f belongs to dyadic H] if and only if f* is integrable.

Analogous to the classical case, the dual dyadic H1 is the space of functions of

dyadic bounded mean oscillation, dyadic BMO. This is the space of functions f € L]

for which the norm

m

llfllBMO SUPiﬁ(%T JI [f(x) - fildx: I is a dyadic interval

is finite. Included in this duality is the "HSlder" inequality of Fefferman:
1
| ff(x)@(x)du <N Hell
0 H BMO
This inequality only holds if the integral above is interpreted as
1 1
J f(x)e(x)dx = lim J WonLf, xMW,nle, x1dx.
0 n+e /0
Details and references can be found in Garsia [1973]. As in the classical case,
gxggig_H1 can be characterized by atomic decompositions (see Chao [1982b]) and dyadic
BMO enjoys the Carleson decomposition (see Chao [1982a]). Both of these decomposi-
tions provide easy proofs of the duality between dyadic H1 and dyadic BMO.

The space dyadic H] is not only analogous to the classical Hardy space H], but
nearly equivalent to it. Indeed, by the atomic theory of Coifman and Weiss [1977] it
is clear that gxggjg_H] is a (proper) subset of classical H'. On the other hand, a
recent result of Davis [1980] proves that given f in classical H], its translates
rxf belong to gxggig_H] for a.e. x.

Vilenkin [1947] showed that Walsh series and the group 2“ are a special case of
a broad theory of Fourier analysis on zero-dimensional groups. Indeed, he proved
that if G is any compact, abelian, zero-dimensional group which satisfies the second
axiom of countability, then there exist primes Pys Pps--- such that each X € G can

be identified with a sequence (x1, x2,...) of integers where 0 5_xj < pj. Thus the

k

group G can be identified with [0,1]. Indeed, for each integer k > 1 set m = nj=]p-.

J
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Given X = (x1, X2,...) let x = 2;=]xj/mj. Then x € [0, 1] and except for a counta-
ble set, the map X -~ x is 1-1 and takes G onto [0,1]. Vilenkin also introduced a nat-
ural ordering for the characters ¥gs ¥1s.ee of G. In the case when all pj = 2, the
group G is precisely the dyadic group and the characters ¥gs ¥qs... are precisely
wox, for k=0, 1,... .

We shall denote the Haar measure of a Vilenkin group G by m. We shall denote
character series Z:=Oakyk by S and Fourier series on G by S[f]. The context and the
square brackets will keep this from being confused with the square function S(f) de-
fined above. We shall denote the LP spaces on G with respect to m by LP(G). The
moduli of continuity on G will be denoted by
w (f) = sup | f{x+h)-f(x) |

heGk, X €G

and

wép)(f) = sup {f [£(x+h)-£(x) Pam(x)} /P,
heG, ‘G

k
where Gk = {x €G: xj =0 for j <k}, k=1, 2,... . Using the identificaton of G

with [0,1] we can also define G-moduli of continuity for functions f with domain
[0,1]. These will be denoted as above by w(s, f) and mp(é, f). A Vilenkin group G
is said to be of bounded type if limsup Py < = Although the proofs usually require
greater sophistication and often neEZZSitate the introduction of new techniques, the
theory for Vilenkin groups of bounded type parallels that for Walsh series. This is
not the case for Vilenkin groups of unbounded type. In fact very 1ittle is known
about these groups.

An important example of Vilenkin groups is provided by the ring of integers 7 of
any local field K. Z is the maximal compact subring in K, and when K is the 2-series
field, the ring 7 is precisely the group 2“. This point of view provides a vehicle
for discussing dyadic analogues of Riesz transforms, Bessel potentials, Mellin and
Hankel transforms, and certain singular integral operators. An elegant, clearly writ-
ten introduction to harmonic analysis on local fields is provided by Taibleson [1975].
For HP spaces in this setting see Chao [1975] - [1982b] and Chao, Gilbert and Tomas
[1981]. For an analogue of the F and M Riesz theorem, see Chao and Taibleson [1979].

During the course of our narrative we shall have occasion to cite certain re-
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sults about Fourier analysis on Vilenkin groups or local fields. In some cases the
cited result will generalize a Walsh series result discussed in that section. 1In
other cases, the cited works will give new information about Walsh series. In such
cases, we leave it to the reader to extract this new information.

Finally, we do not systematically discuss the many applications of Walsh series
to physical problems. We suggest Maqusi [1981] and Harmuth [1972] for general refer-
ences. Concerning sampling theorems see Butzer and Splettstosser [19781, [19801, and
Splettstosser [1979].

I. WALSH-FOURIER SERIES

1. Pointwise convergence. Billard [1967] showed that the Walsh-Fourier series of

L2 functions converge a.e. His proof was a dyadic group adaptation of the Carleson-

Hunt technique which reduces the problem of a.e. convergence to showing that the max-
imal function operator f-Mf = suplwn[fJI is of type (2,2), i.e., that there exists a

constant A such that ]]Mfllz 5?;% f[l2 holds for all f ¢ L2[0,1]. An excellent expo-
sition of this proof has been provided by Hunt [1970]. A different approach to a.e.

convergence of Walsh-Fourier series has been given by Gosselin [1979]. He avoids

the tedious estimates necessary to show that Mf is of type (2,2) by using Fefferman's
L2 method of breaking the partial sum operator into simpler pieces.

The best positive result of a.e. convergence of Walsh-Fourier series (and Four-
ier series as well) belongs to Sjdlin [1969]. He derived certain weak type inequal-
ities involving Mf to show that WLf] converges a.e. when f € Llog+Llog+]og+L, i.e.,
when

j; [£(x)| log"|f(x)]10g"10g" | f(x) [dx < =.

It follows that the Walsh-Fourier series of any function in L(Log+L)]+€

, € >0, con-
verges a.e. It is an open question whether W[f] is a.e. convergent for all f ¢ Llog+L.
In the negative direction, Ladhawala and Pankratz [1976] showed that there exists
an f in gxggjg_H] whose Walsh-Fourier series diverges a.e. Since a non-negative
function belongs to dyadic H] if and only if it belongs to Llog+L, a modification of
their example could provide a negative answer to the question cited in the previous

)1-6

paragraph. For the larger spaces L(]og+1og+L , € >0, Moon [1975] has shown that

Walsh-Fourier series can diverge everywhere. It is not yet known whether Walsh-Four-
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[1975] showed that if w is a non-negative function on G which satisfies the Ap
condition, p > 1, i.e., if

-1
1 1 p-T) -1
(ﬁ(—ﬂ IEmdm) (H(_E—Y JE(L) P dm)p < B <

holds for each coset E of the subgroups Gn = {X € G: xj =0 for j < n}, n>0, then
there exists a constant C_ < » such that

J [Mf |Pudm < C J | £ |wdm
G Plg

holds for all measurable f on G. It follows that S[f] converges a.e. when the right
hand side of this inequality is finite.

For the case when G is the dyadic group, Gundy and Wheeden [1974] proved that
under the Ap condition, 1 < p < =, the weighted LP norms of f and of its square func-
tion S(f) are equivalent. Thus they extended the pioneering work of Hirschman [1955]
who considered weights of the form w(x) = [x|®, for -1 < a < p-1. Gundy and Wheeden
also considered the limiting case when p = 1. They showed that if w > 0 satisfies

the A_ condition and if

mw(E) JEmdm

then given a > 1 and 8 > 1 there exists a number y such that
am (f* > gx, S(f) < vA) <m (f*>1), 2 >0,
and such that a similar inequality holds with the roles of f* and S(f) reversed.
Concerning rearrangements of multiple Walsh-Fourier series, Kemhadze [1975]
proved that given f € LP(G), p > 1, the multiple Walsh-Fourier series of f can be re-
arranged so that its spherical partial sums converge to f a.e.

2. Sets of divergence. LukaSenko [1978] studied proper sets of divergence, i.e.,

sets of the form

E = {x: W[f,x] diverges} (3)
for some integrable f. He proved that given any 38 set E there is a function f € L]
such that (3) holds. However, there are 3% sets and ?; sets for which (3) never holds
when f € §. Moreover, in [1980] he announced that there exists a continuous f such

that the set E defined by (3) is of Haar measure zero, is a 5}0

set, but is neither
a 5% nor an ?; set.

A set E < [0,1] is said to be a set of divergence for a class F of integrable
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functions if there exists an f € ¥ such that W[f] diverges on E. According to
Sjolin's result (see §1), all sets of divergence for LP, p > 1, are of measure zero.
This result is best possible since any set of measure zero is a set of divergence
for LP, 1 < p <. Indeed, for Vilenkin groups of bounded type, Heladze [1978] has
shown that every set E c G of Haar measure zero is a set of divergence for Lp(G),

1 <p <w. This problem is still open for p = » and for &(G). An n-dimensional
version of Heladze's theorem was obtained by Sanadze and Heladze [1977].

For the trigonometric case, Kahane and Katznelson proved that any set of measure
zero is a set of divergence for &. This question remains open for Walsh series. Us-
ing the Banach-Steinhaus theorem, it is not difficult to prove that any countable
set is a set of divergence for %(2*). The first uncountable sets of divergence for
%(2%) were identified by Simon [1973]. His work is valid on any Vilenkin group G,
and his sets of divergence have uncountable intersection with each subgroup Gn. On-
neweer [1979a] proved that every set E of logarithmic Hausdorff measure zero is a set
of (bounded) divergence for &(2”). Harris and the author [1978] have constructed
certain perfect (uncountable) sets of divergence for &(2%) but it is not yet known
whether every perfect set of measure zero is a set of divergence for g(2v).

3. Pointwise convergence of rearranged Walsh-Fourier series. First, we point out

that although the Walsh-Fourier series of any L2 function converges a.e., it is not
necessarily a.e. convergent when rearranged. For example, Heladze [1978] proved that
2

for every Vilenkin group G of bounded type there exists an f € L“(G) such that some

rearrangement of S[f] diverges unboundedly everywhere on G.

It is natural to ask whether a hypothesis stronger than "f € L2"

will guarantee
a.e. convergence of rearrangements of W[f]. For example, does there exist a monotone
increasing sequence {w(k)} of positive numbers such that the condition Xakzw(k) <
implies that a given Walsh series Zakwk is a.e. unconditionally convergent? The
answer is yes if w(k) increases fast enough, e.g., w(k) = k* for a > 1, because
(Zlakl)2 5.(2k'“)(2k“ak2). Tandori [1966] was first to obtain negative answers to
this question: no if w(k) = o(loglogk). Nakata [19721, [1974], [1979] and Bolkarev

[1978a] have obtained increasingly stronger negative answers. In particular, Nakata

(19791 proved that given w(k) which satisfies J(1/(kw(k))) < =, there exists a se-
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quence of real numbers {a,} such that Zakz w(k) < = and such that the Walsh series
Zakwk has an a.e. divergent rearrangement. Thus it is difficult to find conditions
which guarantee that all rearrangements of a giyen Walsh series converge a.e.

However, certain rearrangements are more important than others. When dealing
with Walsh series, the Kaczmarcz rearrangement is an important rearrangement, for
historic reasons and for applications (see Balafov and Rubin$tein [1970], and Harmuth
[19721). It belongs to the general class of dyadic block rearrangements, i.e., re-
arrangements Wo, W],... which satisfy

W 2" < ko< 2™y = g 2k < 2™

forn=20,1,...

The Dirichlet kernel Bn = 22;8 Wk in the Walsh-Kaczmarcz system behaves worse
than the Dirichlet kernel in the Walsh (-Paley) system in the sense that

n
]1:§:p Dn(x) > C>0.
log n

Thus it is harder to prove a Walsh-Kaczmarcz-Fourier series converges, but easier
to find divergent Walsh-Kaczmarcz-Fourier series.

BalaSov [1971] has shown that if w(n)+0, as nsw, there exists an f € L]

n
Timsup [Wn[f, x1| = += a.e.,
Nooo w(nyTogn

n
where wn[f] represents the ni'rl partial sum of the Walsh-Kaczmarcz-Fourier series of

such that

f. In particular &[f] can diverge a.e. when f € L(]og‘LL)]'€ for € > 0. On the other
hand, Young [1974b] proved that if f € L(log+L)2 then WLf] converges a.e. No one has
yet improved either of these results. In particular, the problem of a.e. convergence
of Walsh-Kaczmarcz-Fourier series remains open for f € L(]og+L)p, 1<p<2.

Young [1974a] introduced a large class of dyadic block rearrangements and showed
that WL[f] remains a.e. convergent under these rearrangements for f € Lz. She also
proved that a smaller class of dyadic block rearrangements preserves a.e. convergence
of W[f] when f ¢ L(log+L)zlog+1og+L. This program was carried out for Vilenkin
groups of bounded type by Gosselin and Young [1975]. The techniques are Carleson-
Hunt and involve proving certain maximal inequalities of Hardy-Littlewood type for

these rearrangements.
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An easier program for studying a.e. convergence of rearranged Walsh-Fourier
series has been initiated by Schipp [1975]. If n = Z;=0 njzj and m = Z§=o mj2j are
integers written in binary notation, denote the integer Z;=0 [nj - mJ.IZj by n +m.
He calls a rearrangement {Qk} of the Walsh functions linear if there exists a permu-
tation T of integers such that T(n + m) = T(n) + T(m) and “k = Wy for k > 0. He
shows directly that the partial sums of Walsh-Fourier series in linear rearrange-
ments are closely related to partial sums in the usual (Paley) ordering. Thus he
can apply SjB]in's estimates without repeating the lengthy Carleson-Hunt argument.
In particular, he shows that linear rearrangements of W[f] converge a.e. when f ¢ Lp,
p>1. The Kaczmarcz rearrangement is only piecewise linear. Thus he modified his
procedure to show that piecewise linear rearrangements of W[f] converge a.e. when
f e L2. Bahgecjan [1979] has generalized this result from piecewise linear rear-
rangements to piecewise isomorphic rearrangements.

Skvorcov [1981b] proved a theorem about Walsh-Kaczmarcz-Fourier series which
contains the following corollaries. If f is continuous on the group and if w(§, f) =
o(1/10g(1/8)) as §+0 then ;[f] is uniformly convergent. (Thus the Dini-Lipschitz
test works for Walsh-Kaczmarcz series). If f is continuous on the group and of
bounded variation over [0,1], then a[f] is uniformly convergent. He also shows that
localization does not hold for convergence or (C,1) summability of Walsh-Kaczmarcz
series. Indeed, he constructed an f ¢ L] which equals 0 on [0, 1/2] but whose
Walsh-Kaczmarcz-Fourier series is not (C, 1) summable at the point x = 0.

4. Convergence in norm. Paley [1932] proved that if f € P, < p < », then

wn[f] > f in LP norm, as m. Watari [1958] obtained this same result for Vilenkin
groups of bounded type. But it is now known to hold for any Vilenkin group. Indeed,
Young [1976a], Simon [1976], and Schipp [1976d] all showed that if G is any Vilenkin
group and f ¢ LP(@) for p > 1 then Sn[f]+f in LP norm, as ns=. Of the three meth-
ods, Schipp's is most general and applies to certain arrangements of any product
system, but Young's is simplest.

These results extend neither to p = = nor to p = 1. Thus in order to conclude

that wn[f]+f in L] norm one needs an assumption in addition to f ¢ L1. Onneweer

1

[1978a] obtained an L analogue of the Dini-Lipschitz test, for the Walsh-Paley
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ordering and Skvorcov [1981c] did the same for the Kaczmarcz ordering. Specifically,
they showed if é](é, f) = o(1/10g(1/8)), as 0, then wn[f]+f in L] norm, as Now,
This test fails when "o" is replaced by "0". A Vilenkin group version of this test
was obtained by Simon [1979].

Simon [1978a] has introduced an analogue ; of the Hardy-Littlewood maximal
function (see Stein and Weiss [1971]) on Vilenkin groups G, showing that ; is of type
(ps p) for 1 < p < » and of weak type (1, 1). An application of his inequalities is
that }!Sn[f]llp g_Apllfllp holds for f € LP(6), 1 < p <=, n > 0, where Ap is an ab-
solute constant depending only on p. He also introduced an analogue T of the conju-
gate function [1976] and has shown [1978b] that there is an absolute constant C such
that

[{x € G: ;f(x) <y and |Tf(x)]> ay}| §_Ce'°Ay
holds for all f € L'(6) and all A, y > 0.
Results concerning uniform convergence of Walsh-Fourier series can be found in

the following two sections.

5. Moduli of continuity and absolute convergence of Walsh-Fourier series.

A classical result of Fine [1949] is that if f € Lipa, a > 1/2, then W[f] converges
absolutely. In this s;ction we report several extensions and refinements of this
result.

Yoneda [1973] weakened the condition "f € Lipa, « > 1/2" to convergence of the
series

o

L a,(1/n, £)// 0, (4)

n=1
and obtained the Walsh analogue of a theorem of Zygmund: if f is continuous and of

bounded variation and if
Y Vo(T/n,f)/ n<w (5)
n=1

then W[f] is absolutely convergent. He also introduced a summabilily method X and
localized Fine's result in the following manner. If f € Lipa on some interval I,
where o > 1/2, then W[f] is absolutely summable X on I.

In connection with (5), Bofkarev [1978b] has shown that if w is any modulus of

continuity which satisfies
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S /UL 0 = e

n=1
then there exists an absolutely continuous f with w(§, f) = 0(w(s)), as § - 0, such
that Z!ak(f)l = 4o,
Onneweer [1972] generalized Fine's result to Vilenkin groups G of bounded type
by examining the role oscillation plays in determining absolute convergence of S[f].
Before stating his results we need some additional terminology. Let f be defined on
G and let H be a subset of G. The oscillation of f on H is defined by

osc(f, H) = sup [f(x)) - f(x,)].
x], x2€

For each integer k > 0, let z (0 <q < mk) represent points of G for which z

qQ, k q, k
+ G exhaust the cosets of G, in G. The function f is said to be of p-generalized

bounded fluctuation if the terms of the series
- mk-1
1
kZ](qzolosc (f, Zok ¥ Gk)lp) /p (6)

are uniformly bounded in k. Onneweer proved that if f € Lp(G), 1<p<2and if (6)
converges then S[f] converges absolutely. He also showed that S[f] is absolutely
convergent when f € Lipa a > 0, and is of p-generalized bounded fluctuation.

Onneweer [1974] proved that if f belongs to Lip (o, p) * Lip (8, q) for 1 <p <
2,g>1,0<0a,8<1and (o +8)p>1onsome Vilenkin group G of bounded type,
then S[f] converges absolutely. Quek and Yap [1981] showed that the hypothesis "of
bounded type" is redundant. Their method rests on a powerful factorization of Lip(a,
r) as Lip (a-B, r) * Lip ((8-1)/q , p) where 1/p + 1/9 =1 and @ > 1/8. It follows
that Lip (a, r) cLip (e + 1/s - 1/r, s) holds on any Vilenkin group when 0 < a < =,
l<r<s<oanda+1/s > 1/r.

Vilenkin and'Rubinstein [1975] established Vilenkin graoup versions of results
cited in the second paragraph of this section. Specifically, if G is of bounded
type then S[f] is absolutely convergent when either

kzl/m a BN(9) <=, £ eL2(0) (7)

or when f is continuous and of bounded variation on G and

LT < (8)
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holds. In particular, if f € Lipa, o > 0 and if f is of bounded variation on G,

then S[f] converges absolutely on G. (The reason that (4), (7) and (5), (8) are not
exact analogues is that on the dyadic group, wk(f) corresponds to w(Z'k, f) not
w(1/k, f)). McLaughlin [1973] has obtained exact Vilenkin group analogues of (4) and
(5) (see §12.) Al1 these results hold for Vilenkin groups of unbounded type as

well (see Quek and Yap [19801, [19811).

Combining results of Ladhawala [1976] and Butzer and Wagner [1973] one can show
that W[f] is absolutely convergent when f € Lip(a, LP), o > 1, p>1. It is an open
question whether this is true for o = 1.

Finally, RubinStein [19781 has shown that given any sequence wy ¥ 0, as n > e,
and any Vilenkin group G there exist functions f] € L](G), f2 € LZ(G), and f_¢ 4(G)
such that mn(p)(fp) =w, forn>0and p=1, 2, or=.

6. Uniform convergence of Walsh-Fourier series. Onneweer [1970] obtained an anal-

ogue of a theorem of Salem. If f is continuous and periodic of period 1, and if the

sequence

kZ] K f(x + _EEET_Q - f(x + g%;} )| (9)

converges to zero, as n > =, then W[f] converges uniformly on [0,1]. A similar re-
sult for Walsh-Kaczmarcz series is due to Skvorcov [1981b]. A version of this re-
sult also holds for Vilenkin groups G of bounded type (Onneweer and Waterman [19711).
Thus, if ( f) = o(1/k), as k ~ =, and if f € §(G) then S[f] is uniformly convergent
on G (Vilenkin [1947]).

For Vilenkin groups of bounded type, Onneweer and Waterman [1971] proved that
if f is continuous and of 1-generalized bounded fluctuation (defined in §5 above)
then S[f] is uniformly convergent. They strengthened this result in several direc-
tions in [1974]. 1In order to state their results we need additional terminology.

Let A = {x } be a sequence of positive numbers which satisfy Zz=] x;] = +w, A func-

tion f defined on G is said to be of A-bounded ftuctuation if there exists an M < =

’

such that for every collection {I_} of disjoint cosets in G it is the case that

-1 osc(f, In) < M,
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The function f is said to be of harmonic bounded fluctuation if it is of {n} - bound-

ed fluctuation. Onneweer and Waterman showed that there exist functions f of A-bound-
ed fluctuation whose Vilenkin-Fourier series S[f] diverge at at least one point. How-
ever, if f is of harmonic bounded fluctuation theﬁ S[f] converges at every point of
continuity and converges uniformly on any closed set of continuity for f. Their
method centered on finding an analogue of Lebesgue's test on G and showing that this
test is satisfied at points of continuity for functions of harmonic bounded fluctuation
Their work also contains a very interesting condition sufficient to conclude that
a continuous function is of harmonic bounded fluctuation. Given an open set V c G,
let N(V) represent the number (possibly infinite) of disjoint open "intervals" sep-

arated by the elements of G~ V. If f € §(G) with range [0,1] and if

]
J log N{x € G: f(x) > y}dy < =
0

then f is of harmonic bounded fluctuation. Thus such functions have uniformly con-
vergent Vilenkin-Fourier series. This is a group analogue of the Garsia-Sawyer test
(see Onneweer [1971b1).

Concerning the size of lwn[f] - f|, Tevzadze [1978] announced certain estinates

in terms of the modulus of continuity and variation of f which contain a group 2
version of the Garsia-Sawyer test. Specifically, he states that if vw(n) represents

the modulus of variation of f then there is an absolute constant C (independent of 7)

such that || f - wn[f]|le is dominated by

¢ omin Wi/, )] I ) A, (10)
1<m<n k=1 k=m+1 kK

It follows that if f belongs to the class H® (V[v] for some modulus of continuity w
and some modulus of variation v, then W[f] is uniformly convergent on [0.:' if and
only if the sequence (10) converges to zero, as n > <. Hence for a given continuous
f € V[v], a necessary and sufficient condition that W[f] be uniformly convergent is
that Jr_ju(k)/k% < =

Gulicev [1980] (announced in [1979b]) has shown that the Walsh analogues of
theorems of Oskolkov and Busko fail to hold. Specifically, if {Lk} represent the
Walsh-Lebesgue constants (See Fine [1949]) then
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Viming T - W I,
k%W-OfOFf&g, (1)

and

Himing AT ¢ e 1) (12)
00 Ly
However, if the 1imit infima in (11) and (12) are taken over certain subsequences of
integers then =0 is replaced by >0. Thus for certain subsequences, analogy with the
trigonometric system is restored.

7. Summability of Walsh-Fourier series. Although there exist integrable functions

whose Walsh-Fourier series diverge everywhere, certain averages of these Walsh-
Fourier series still approximate the given function.

For example, Fine [1955] showed that if f € L] then W[f] is a.e. (C, o)
summable to f for all o > 0. A new proof of this result has been given by Schipp
[1976c]. He takes the Carleson-Hunt point of view, and shows that the maximal func-
tion associated with a large class of summability methods is of type (=, ) and of
weak type (1, 1). This same program was carried out for Vilenkin groups of bounded

th

type by PS] and Simon [1977al. In particular, if cn(f) represents the n~ partial

Cesaro sum of S[f] and if o*(f) = suplon(f)l then
n>0

mi{x: |o*(f, x)| > y} 5,C[|f|h/y, y > 0.
Thus f € L](G)imp]ies that o*(f) is weakly integrable. It is natural to ask under
what conditions is o*(f) actually integrable? Nobuhiko [1979] used atomic H](G)
to prove that
[ oxteyian < clif ;.

Hence o*(f) € L](G) when f € H](G?. "
Baiarstanova [1979] has considered (C,1) summability of wnk[f] where

k k-2 + 2k-4 +..

n = 27+ 2

is 0(1//Tog(1/58)), as &0, then W [f] is uniformly (C,1) summable (respectively,
k
(C,1) summable in L] norm). This result contrasts nicely with Schipp's result

.+ 1. She showed that if &(s, f) (respectively, &](6, £))

(see (1) and (2) in s1).
Other methods of averaging can also be used to show that W[f] approximates f

in some sense. One such example is the method of strong summability. Schipp [1969al

1

proved that if f € L' then
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m-1
LT ey - gy (13)
k=0
converges to zero a.e., as m -~ », for any choice 0 < p < ». An n-dimensional
v
version of this result was announced by SaraSenidze [1976] for functions in
L(]og+L)"']. Apparently, the n-dimensional version of (13) fails to converge a.e.

to zero for certain f € L (log+1og+L)n']

for n > 2.
Several authors have considered weaker versions of (13). For example,
Cybertowicz [1976] showed that if r > 0 and if CIR ("'if;'k) / (n-l+r) for

k< n-landa ; | =0 fork>n-1, then

s

n-1
2,1/2
{k=0 an k lwk[f] - f%) >0

1. Zarafenidze [1973] proved that given any positive,

a.e., as n > for all f €L
regular method of summability [an, k] with A ka1 Sk and given any continuous
f there exist numbers ot such that

n-1 r
1

uniformly, as n » .,
Yano [1951b] investjgated the growth of (C, 8) sums of Walsh-Fourier series in
LP norms. He proved that if 1 <p<w,0<a<1andfe€Lip(a, LP) then
B _ -a
Il on(f) - fHLp =0(n"®), as n » =,

provided 8 > a. Remarkably, Skvorcov [1981a] showed that this estimate holds even
for 0 < 8 < a. Moreover, he obtained an order estimate for the limiting case o = 1:
if £ € Lip(1, LP) then
Il B(F) - f]| _ = 0(logn/n), as n -+ =.
n LP
In fact, he proved much more. He showed that there is an absolute constant C such
that if n > 0, 8 > 0 and f € LP then

m
"8 _ -m k- o~k
Il () fHLp <C2 kzo 2 wp(2

9, f)’

where m is defined by 2" <n«< 1 and gﬁ(f) represents the partial (C,8) sum of

WLf] in any piecewise linear rearrangement (see §3). Thus the order estimates above
hold for Walsh-Kaczmarcz series as well as Walsh (-Paley) series. In particular if
felP, < p <=, then the (C,8) sum of any piecewise linear rearrangement of W[f]

converges to f in LP norm. Skvorcov [1982] has generalized these results to Vilenkin
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groups of bounded type.

For results concerning (C,B) sums of Walsh-Fourier series when g < 0, see
Tevzadze [1981].

Bicadze [1979] has obtained necessary and sufficient conditions for a multiple
Walsh series with monotone coefficients in the sense of Hardy to be (C, 1) summable
to f in LP norm, 0 < p < 1.

Finally, Tateoka [1978] has studied Tocalization on the unit square. Recall
that if X is a collection of integrable functions then a summability method T has

the localization property for X if given any f € X which vanishes on an open set V,

the double Walsh-Fourier series of f is uniformly summable (T) to zero on compact
subsets of V. Tateoka shows that square partial sums do not have the localization
property for &, that square Abel means have the localization property for Lp, p > 2,
but do not have it for Lp, 1 <p <2, and that rectangular Abel means have the
localization property for & but not for Lp, p>1.

8. Adjustment on sets of small measure to enhance convergence. A celebrated result

of Menshov for trigoncmetric series is that given an a.e. finite-valued, measurable
f and an € > 0 there exists a continuous function ? which coincides with f off a
set of measure less than € such tnat the Fourier series of ¥.converges uniformly on
[0,2r]. Kotljar [1966] showed that this result is also true for Walsh-Fourier series.
Price [1969] gave a new Walsh proof of Menshov's theorem, utilizing the fact
that the Walsh functions are characters of the dyadic group. This proof was adapted
to Vilenkin groups of bounded type by Onneweer [1971c].
Concerning whether adjustment can be made to improve the decay of Walsh-Fourier
coefficients, Olevskii [1978] showed that there is an f € & such that given any

1

N
f € L' which coincides with f on a set of positive measure, it is the case that

Zo|an(?)lp = for all p < 2.
n= ‘

In particular, a continuous function cannot be adjusted so that its Walsh-Fourier
series is absolutely convergent. (GuliCev [1979a] has also given a proof of this
corollary to Olevski?'s theorem.)

Adjustments can be made which result in a.e. and L] convergence. Indeed,

Heladze [1977] has given an outline of a proof which establishes that given f € L]
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and given € > 0 there is a measurable s with m{x: s(x) # 1} < € such that W[sf]
converges a.e. and in L] norm.

Kemhadze [1977] obtained an adjustment theorem for functions f continuous on the
n-dimensional hypercube. He proved that given € > 0 there is a g which coincides
with f off a set of measure less than € such that the rectangular partial sum of the
multiple Walsh-Fourier series of f converges everywhere. He also shows that g can
be chosen so that its Walsh-Fourier series has certain prescribed gaps.

. APPROXIMATION BY WALSH SERIES
9. Walsh series with gaps. The study of gap Walsh series predates the study of

Walsh series since the Rademacher functions were introduced before the Walsh func-
tions.

Coury [1974b] investigated differentiability of Rademacher series. He showed
that a Rademacher series is either a.e. differentiable or almost nowhere differenti-
able. Using an earlier result of Balasov [1965], who made several foundational
contributions to this problem, Coury proved that if a Rademacher series is differ-
entiable at one point then it is of bounded pEﬁ variation for all p > 1. A deeper
result he obtained is that any a.e. differentiable Rademacher series is of bounded
variation. (Coury [1974a] has identified several conditions on the coefficients of a
given Walsh series W sufficient to conclude that W is a.e. differentiable.)

For results about dyadic differentiability of Rademacher series see §15.

Zotikov [1976] has studied the problem of convergence of Rademacher series in
Vilenkin groups G. He shows that the Rademacher system {Rn}:=0 is independent and
that if G is of bounded type then
nZoaan (14)
is not a.e. summable by any T* method (see Bary [19641) when Zaﬁ = +o=, When G is of
bounded type, he shows that (14) converges absolutely if and only if

Flml .
n=0 /PB;—
in which case the limit F of (14) is bounded, is continuous on {pn}-adic irrationals,

and has Vilenkin-Fourier series (14).
A Walsh series kz] ankw"k is called lacunary if Nt/ 29> 1 fork=1, 2,...
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Clearly every Rademacher series is a lacunary Walsh series. Coury [1973] proved
that if E is a set of second category which has the property of Baire and if W is a
lacunary Walsh series which converges to zero (or is constant) on E, then W is actu-
ally a Walsh polynomial. A related result announced by Ebralidze [1976] is the fol-
Towing. Let {Rm, K (m=1, 2,..., k=1, 2,...) be a sequence of real numbers which

satisfies Rm’ K™ 1as m»>w for k > 1 and
max min
2n<k12 21"
form > 1, n >0, where ¢ is a fixed, finite number > 1. If either the limit suprem-

nel Rokl <€ Ry

um or the limit infimum, as m » « of the sums

LRk 20
is finite for all x in a set E of the second category, then jla | < =. In the case
when E is an interval and Rm,k = 1, this result had been obtained for any lacunary
Walsh series by Morgenthaler [1957].

Concerning whether the sequence of coefficients of a Rademacher series belong
to any 2P space, 1 < p < 2, Rodin and Semjonov [1975] have examined analogues of
Khinchin's inequality for certain symmetric Banach spaces including those of Lorentz,
Marcinkiewicz, and Orlicz. A corollary of their work is that a Rademacher series
f = Z:_oakrk has coefficients {a,) € £P for some 1 < p < 2 if and only if

) El.v/(l + 10g,(12 ()N P dy < o,

Kolmogorov first noticed that convergence of a Rademacher series on a set of
positive measure is sufficient to conclude that its coefficients belong to £2.
Morgenthaler [1957] showed this result also holds for lacunary Walsh series. GapoSkin
[1971] weakened the lacunary condition considerably and Miheev [1979] pushed this
result even further. He proved that if Eakwnk is T* summable on a set of positive
measure, if N + np > as k, £ ~ » with k > £, and if for some p > 2 there is a

constant C such that

lllzi I I f I
b, w < C b, w
k=1 KPR Ly ko 2

holds for £ > 1 and any choice of real bk's, then

Z ai < w,

k=1
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Morganthaler [1957] proved a central 1imit theorem for lacunary Walsh series.
The idea was that a lacunary Walsh series is close to being a Rademacher series and
thus might behave 1ike independent identically distributed random variables. This
approach was developed further in a series of papers in which central 1imit theorems,
laws of iterated logarithm, and functional laws of the iterated logarithm were
obtained (see Foldes [19721, [1975], Berkes [1974]1, Takahashi [1975], and 6hashi

[1979].) For example, a Walsh series Zakwn is called weakly lacunary if there exist

c>0and 0 <a < 1/2 such that n >1+ck®for k=1,2, .... Suppose for

k1!
the remainder of this paragraph that the coefficients of a weakly lacunary Walsh

series satisfy

N
ANE(Z ak2)1/2++eo, as N » o.
k=1
1+€
Takahashi [1975] showed if a = O(AN/[Na(log AN) "2 1), as N > =, for some € > 0,
then
N
. 2 2\-1/2
Timsup (2A; loglogAg) Yaw =1a.e.;
Noreo N AN k=1 k N
Foldes [1975] showed if ay = o(AN/N“), as N + =, then
Tim m{x: AZ! ? (x) <y} LI —tz/zd (15)
im m{x: aw (x) <y}=- f e t, —» <y <o,
Nowo N =1 komg Ve conll B

6hashi [1979] obtained a local version of (15) and used it to prove that there exist
weakly lacunary Walsh-Fourier series which diverge a.e. He also showed that the
Foldes growth condition is best possible. Specifically, he proved that given any
c>0and 0 < 1/2 there exist integers Ny <Ny <.l and coefficients aps Apseen
such that nk+1/”k > 1 + ck™ for k > 1, such that AN +®, as N > =, and such that
ay = 0(Ay/N%), as N » =, but such that (15) fails to hold.

As noted above, under certain conditions (e.g., convergence to zero on an inter-
val) the only lacunary Walsh series ure Walsh polynomials. Such a condition was
obtained by Roider [1969] for gap Walsh- Fourier series. If k = 2" 4.+ 2" is a

positive integer with np2np>...zn > 0, the Vielfalt of k is defined to be

V(k) = y. Thus a rather mild lacunary condition is given by
ak(f) =0 for V(k) > v (16)
for some fixed integer v. Roider proved that if f € L] assumes only finitely many,

or only integral, values, and if (16) is satisfied for some . > 0, then f is actually
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a Walsh polynomial. For related results see Gruber [1977/78].

For a local condition sufficient to conclude that a gap series is a Walsh poly-
nomial see [1982] by the author. For results concerning summability of gap series
see §11.

10. The Walsh system as a basis. Recall that a system {fys f5,...) is a basis in

some Banach space B if given f € B there is a unique series Z:=]anfn which converges
in B norm to f. The Walsh system is a basis for LP, 1 < p < ». Kazarjan [1978]
examined whether a subsystem {wnk}:=1 of the Walsh system can be multiplicatively
completed, i.e., whether there exists a measurable ¢ such that {¢(x)wnk(x)}:=] is a
basis for the spaces Lp, 1 < p <=, He proved that such a ¢ never exists no matter
how few and far between the gaps are.

Two systems {f], f2,...} and {g], 92"°'} are equivalent bases in a Banach

space B if given coefficients aps 5. the series }:anfn and Zangn are equiconver-
gent in B. Ciesielski and Kwapién [1979] proved that the Walsh system and the bounded
polygonals are equivalent bases in P, 1< p < ». On the other hand, Young [1976b]
showed that the trigonometric and Walsh systems are not equivalent bases in Lp, p#a
Hence they will have different multipliers, and multipliers for the Walsh system
should be investigated.

Shirey [1973] examined the Walsh system as a quasi-basis, and proved that given
any set E of positive measure, the quasi-basis for LPe), 1 < p < =, obtained by
restricting the Walsh system to E, is a conditional quasi-basis.

11. Approximation by Walsh series. Skvorcov [1973b] has shown that unlike the

trigonometric case or the one-dimensional Walsh case, convergence of a double Walsh
series W on a set of positive measure is not sufficient to conclude that the coef-
ficients of W converge to zero. However, he proved that if the retangular partial
sums of a double Walsh series W converge on any dyadic irrational across (i.e., on a
set of the form {a} x (0, 1) U'(0, 1) x {b}, where a and b are dyadic irrationals)
then the coefficients of W satisfy an,m +0,asm+n-»>w,

One of Menshov's celebrated results is that given any measurable, a.e. finite-
valued function ¢ there is a trigonometric series which converges to ¢ a.e. His

techniques apply equally well to Walsh series. Thus Walsh series can be used to
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approximate measurable functions which are finite a.e.

Talaljan [1960] has shown that given any LP basis, p > 1, and any measurable
¢ (finite or not) there is a series with respect to that basis which converges in
measure to ¢. Thus to every measurable ¢ there éorresponds at least one Walsh
series which converges to ¢ in measure. This result does not hold if "in measure"
is replaced by "a.e.". In fact, Talaljan and Arutunjan [1965] proved that there is
no Walsh series W which satisfies wzm > +o on a set of positive measure, as m » =,
Thus Walsh series cannot be used for a.e. approximation of general measurable func-
tions.

It is natural to ask whether rearranged Walsh series or (C, 1) partial sums of
Walsh series can be used for a.e. approximation of measurable functions. The answer
to the second question is yes, and there is strong evidence that the first question
can also be answered in the affirmative. §aginjan [1979] showed that given any
positive regular method T' of summability there exist Walsh series W = Zi=1akwn

€ for €50 and Zt=]n;] < = such that given any measurable ¢ there

with {a,} € ¢%
exists a subseries of W which is a.e. T' summable to ¢. Thus given a measurable ¢,
there exist Walsh series which are a.e. (C, o) summable, o« > 0, and a.e. Abel sum-
mable to ¢. And, Ovsepjan [1973] proved that there exists a Walsh series which
has a rearrangement that diverges a.e. to +=,

This question of divergence has been addressed for double Walsh series. Kemhadze
[1969] proved that if W is a double Walsh series then wzn, om cannot diverge to +=
on a set of positive measure, as n, m - . Thus even rectangular sums of double
Walsh series cannot be used to a.e. approximate measurable functions unless the
functions are finite-valued a.e.

Pogosjan [1980] announced results concerning a.e. summability to +~ of the series

T = Teo v/ T

where Yy = 0, 1 and Zk is a dyadic block rearrangement on the Walsh function, i.e.

n+]} = {w: 2" <k < 2n+1}

N
{wk:Znik<2
forn=0, 1,... . A consequence of his results is that if np <Ny <. satisfies

11Esup ”k+1/"k = », then one can choose numbers Yk such that Tn +> +o a.e. as k » =,
00 k
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On the other hand, if the ratios "k+1/nk are uniformly bounded, then Tn cannot
k
diverge to +~ on a set of positive measure.

§aginjan has obtained several conditions sufficient to conclude that

f(x) = 1/2 [Timsup S_ (x) + liminf S_ (x)] (17)
Nk Mk

koo

holds for a.e. x in some given measurable set E. For example, in [1974] he showed
that if S = § akxk is some dyadic block rearrangement of a Walsh series, if Szn(x)
converges to a finite measurable f on E, and if 1iminfk*msnk(x) > -o for x € E then
(17) holds for a.e. x € E. In [1981] he proved that if S = ajwkj is a gap Walsh

series with k] < k2 <ivuy 1 - kj/k = 0(1/j) as j - = and

j+
n-2'

jZ1J|2kj+1 " Kjeg Kyl = 0lkp), as o e

if S is (C, 1) summable a.e. on E to a measurable, a.e. finite-valued function f,

and if liminf

ko

S"k(X) > -= for x € E, then (17) holds a.e. on E. Notice that this
result includes gaps of the form kj = n-j" for fixed n, m >1,j=1,2,... Concern-
ing the (C, 1) analogue of (17), gaginjan [1974] proved that if S is a dyadic block
rearrangement of a Walsh series, if czn(x, S) converges, as n » =, to a finite-valued,

measurable f on E and if Timinf, o (x, S) > -» for x € E, then

koo M
f(x) = 1/2[Timsup o (x, S) + liminf °n (x, S)J
& k k- k

holds for a.e. x € E. Contained in his proof is verification of the following
"Tauberian" theorem. If 1imsupn+w|02n(x, S)| < » holds for all x € E, then Szn(x)
converges a.e. on E, and
liminf 02n(Xs S) < Tim Sgn(x) < limsup Ogn(x, S)
N->c N> n->ow

holds for a.e. x € E.

Concerning structure of sets on which Walsh series diverge, LukaSenko [1978]
showed that given any 36 - set E there is a Walsh series W such that

E = {x: lim W _(x) does not exist}.
noo N
He also proved that this result does not necessarily hold if "5g-set“ is replaced by
"7 -set.”
[0}
For every f € Lp, 1 <p<w, let Egp)(f) denote the infimum of the expression

I f- ZE;& akwkllp as {a,} take on all real values, for n =1, 2,... Golubov [1972]
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has obtained many sharp estimates relating the "non-dyadic" moduli of continuity

1
(6, F) = sup j [£(x + h) - £f(x)|Pdx31/P, 0 <5 <1,
0

O<h<s

to the sequences Egp)(f). He proved that

n
;b(]/n, f) <96 n_]/ka] k.l/p“.l Eap)(f)

holds for all f € LP and all n > 1. He also obtained the following analogues of
trigonometric inequalities due to Ul'janov. If 1 < p < q < = there exists a constant

C depending only on p and q such that

w 3.2
Nell <cillfll. + 05 kP relP) (619719
o scilitlly, + i el
and

1/p-1/ IS
e (6) < celP(p)nl/P-1/a Ll

hold for n > 1, and f € LP. (See Golubov [1970]1, p. 719, for ramifications).

1KQ/P'2[E£P)(f)]Q]1/q}

Siddiqi [1971] proved that given a quasi-convex sequence (a1, the Walsh series

W = Jaw,  converges in L!

norm if and only if ak1ogk + 0, as k » =,
V. WALSH-FOURIER COEFFICIENTS

12. Growth of Walsh-Fourier coefficients. Several authors have investigated

LY
conditions under which the series

kzlkY GIE (18)
converges for various choices of y and 8. A unified treatment of this problem (not
only in the Walsh case, but for Vilenkin groups of bounded type as well) has been
given by McLaughlin [1973]. His article contains an extensive bibliography and is
nearly a compendium of what is known about this problem. His main result, still the
most general of its kind, is that if 1 <p <2, if0 <g <qand if 1/p+1/q=1,
then (18) converges when
7 kY‘B/qmp(l/k, £)]8 < =,

Ladhawala [1976] showedkzgat (18) converges for y = -1 and g = 1 when f belongs
to gxggjg_H]. His proof contains the following interesting fact. If {ak} is a se-
quence of real numbers which satisfies a = 0(1/k), as k » =, then a = ak(¢) for

some ¢ of bounded mean oscillation. Chao [1981] has obtained these results for

Vilenkin groups of bounded type. In addition, Quek and Yap [1980] have shown that
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(18) converges for y = 0 when f € Lip (a, p) on any Vilenkin group of bounded type
provided g8 > p/(ap + p - 1).

Moricz [1981] has studied integrability of a Walsh series with monotone coef-
ficients a_ > ay >...> a, > 0. He proved that forr>1,8=r, and y = r - 2, the

0 —
series (18) converges if and only if

1
I = J sup | Z a W, x)|) dx < =,
o "9

In the case r=1, it turns out that j 3 /k < = is both necessary and sufficient for
I. to be finite.
Vilenkin and RubinStein [1975] have several estimates of the tails of (18) when

= 0 in the Vilenkin group setting. They proved that if f € LZ(G) then

T layAIBY2 @i, k=, 2,
J=m,
They obtained analogues of two theorems of Lorenz for Vilenkin groups of bounded
type: if P < C for k=1,2,..., if f € Lipa(G), a« > 1/p - 1/2 for some 0 < p < 2,
then

{ Z Ia |p}1/p 5_ka]/p'°']/2.

J"mk
And, if I;=mk|aj(f)| 5_Cm; for some o > 0 then f € Lipa(G).

HoroSko [1972] considered the problem of determining exact estimates for the

growth of Walsh-Fourier coefficients of functions belonging to HV’ the class of f
whose variation does not exceed the constant V > 0. He proved that the maximum of

sup Iak(f)l (19)
f€Hv

for 2" < k < 2™ is v/2™1 and that the minimum of (19) for 2" < k < 2™ is v/2™2,
RubinStein [1980] obtained an extension of Parseval's identity from 1 < p < =
to p =1 for Vilenkin groups of bounded type. He announced that if
nwn(])(f) . wn(g) +0, as n > =, (20)
then J fgdm = Z:=0ak(f)3;T§T. He indicated that this identity does not necessarily
hold ig (20) is relaxed to

liminf nmn('])(f)wn(g) >0

N

13. Conditions on Walsh-Fourier coefficients sufficient to conclude that f is
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constant. Fine [1949] was among the first to notice that the Walsh-Fourier coeffi-
cients of a smooth function cannot decay too rapidly. He showed that if f is absolute-
1y continuous and if kak(f) +~ 0, as k »~ =, then f is constant on [0,1].

Bockarev [1970] sought to determine how rapidly Walsh-Fourier coefficients of
continuous functions can decay. He proved that if |a,(f)| < d,, where d, + 0 and
de < and if f is continuous, then f is constant on [0,1]. Hence the Walsh-
Fourier coefficients of a non-constant continuous f cannot satisfy

la (f)] = 0(1/0k(10gk)*1), as k » =,
for some « > 1. The condition o > 1 cannot be relaxed. Indeed, BoCkarev constructed
a non-constant, continuous f whose Walsh-Fourier coefficients satisfy
lak(f)[ = 0(1/[klogkl), as k ~ = (see BoCkarev [1978b1, p. 19).

One drawback to Bockarev's result is that it only applies to functions whose
Walsh-Fourier series are absolutely convergent. Coury [1974a] worked to remove this
restriction. He proved that if f is continuous and if

2P E +0,as p > (21)
m=pRm

where R = E{Iak(f) - ak+](f)]: M <k < 2™1.1}, then f is constant. It follows
that no non-constant, continuous f whose Walsh-Fourier coefficients are monotone
decreasing can satisfy 2"a2n(f) + 0, as n - ». The author [1983] has generalized
this result by weakening condition (21).
Coury has proved (but not yet published) that there is no non-constant,
continuous f which satisfies
kZ]klak(f)l <
Powell and the author [1981] generalized this result: if f is continuous, if
Z:zok“ak(f)wk converges on (0,1) for some a > 1, with the further assumption that
w (j+1)2N-1

Tim j2"a (flw (x), x € (0, 1),
e §=1 kzjzn k> "k

exists when o = 1, then f is constant.
The author [1979b1 has identified several conditions sufficient to conclude

that a function is constant on [0,1]. The most interesting one is that there is no

non-constant continuously differentiable function which satisfies
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s n 2Kt
woldy Lk 2@ <=
for all dyadic rationals p € [0,1].
V. DYADIC DIFFERENTIATION
14. The strong dyadic derivative. Butzer and Wagner [1973] introduced the dyadic
derivative, which interacts with the Walsh-Paley functions in much the same way as
the classical derivative interacts with the exponential functions {einx}_ Chief
among these interactions is the fact that Walsh functions are the eigenfunctions of
the induced differential operator, and
Dwy = kw,, k=0,1,... . (22)

Butzer and Wagner [1972] also defined a derivative which yields (22) for the Walsh
functions in the Kaczmarcz ordering. The Walsh-Paley definition is described below.

Let X represent either the space & or one of the spaces Lp, 1 <p<=Agiven

f € X is said to be strongly dyadically differentiable in X (more briefly, X differ-

entiable) if the sequence of functions
n-1 . . .
4 (f.x) = § 270F(x) - fx + 273713 (23)

converges in the norm of X, in which case the limit of (23) is called the strong

dyadic derivative of f and denoted by Df. The dyadic antiderivative I is defined by

-1

T R
If (x) = f Flx +t) [0+ kz] K Tw, (£)1dt (28)

0
Butzer and Wagner [1973] proved that D is a closed 1inear operator, that if f € X

then If is X differentiable with
D(If) = f a.e. . (25)
And I(Df) = f a.e. when f is X differentiable. Thus the fundamental theorem of
dyadic calculus is true. They also obtained the following characterization of strong
dyadic differentiation. For any f € X the following three conditions are equivalent:
f is X differentiable and g = Df; (26)
there is a g € X such that (27)
kak(f) = ak(g) for k =1, 2,...3
and

there is a g € X such that f = Ig + a,(f). (28)
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This same characterization was extended to include X = dyadic H] by Ladhawala [1976].
Butzer and Wagner [1975] also obtained a closed form for the "dyadic integral" opera-

tor (24). They proved that if £ € L' then

o

If = ao(f) + 7 ak(f)/k a.e.

Most results about the dyadic derivative have reinforced the idea that it is the
correct derivative to use in Walsh-Fourier analysis. For example, Butzer and Wagner
[1973] confirmed the connection between differentiability and Lipschitz spaces by
showing that any f € Lip (o, X) for o > 1 has a strong dyadic derivative Df € X, and,
moreover, any function f with a strong dyadic derivative Df € X necessarily belongs
to Lip (B, X) for 0 < B < 1. Ladhawala [1976] showed that If converges absolutely
when f belongs to dyadic H], i.e., if f is strongly dyadically differentiable in
dyadic H' then WLf] is absolutely convergent. In particular, if Df exists in dyadic
H! (or in any LP for p > 1), then f is continuous on the group.

On the other hand, Penney [1976] has shown that not all strongly dyadically
differentiable functions are continuous on the group. In fact, Ladhawala [1976]
proved that if Df exists in L] then the best one can say is that f € BMO; f may not
even be bounded.

Several authors have considered generalizations of the dyadic derivative to
objects other than functions defined on [0,1] with dyadic structure. Pal[19757 de-
fined Df on the dyadic field, i.e,, for functions f € L](O, =) and showed that the
"Walsh transform" 7 (see Fine [19501) interacts with D as it should: namely, if Df
exists then F(Df)(y) = y#(y) and D(Ff)(x) = F(xf(x)) if xf(x) € L! (0, =»). In [1977]
he constructed an indefinite integral for D and proved a fundamental theorem of
calculus in this setting.

Onneweer [1977] introduced a Vilenkin group analogue of the dyadic derivative,
showing that the characters of the Vilenkin group are the eigenfunctions of the in-
duced differential operator and argued that the Butzer-Wagner characterization (26),
(27), and (28) carries over without extra work to this setting. Pal and Simon [1977b]
proved a fundamental theorem of calculus for Onneweer's derivative. We shall call
this derivative "dyadic" below.

From the beginning, it has bothered some that the definition of the dyadic
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derivative depends on the ordering of the characters. Onneweer [1978b] endeavored

to erase this deficiency, while at the same time coming up with a derivative whose
eigenvalues represented the "frequency" of the characters as in the classical case
with d/dx and {einx}. His efforts were concentrated on p-adic and p-series fields K.
(Recall that the group of integers of a 2-series field is precisely the dyadic group
2“). His definition yields different eigenvalues on 2“ from those of the strcng
dyadic derivative discussed above sinée Dw, = 2"wk where 2" <k < 2n+], n=20,1,...
Nevertheless, the characters of K are again eigenfunctions of the associated differ-
ential operator, which turns out to be a closed, linear operator in L](K). Onneweer
[1979b] introduced another "dyadic" derivative and compared all four derivatives -
the Butzer-Wagner derivative, the one introduced by P;] on the dyadic field, his ear-
lier one on K, and this latest one defined on the dyadic group and the dyadic field.
This latest derivative behaves much as the others but has the twin virtues of simplic-
ity and the hope of lending itself more easily to an interpretation with possible
applications in the physical sciences.

15. The pointwise dyadic derivative. A function f defined on [0,1] is said to have

a dyadic derivative at a point x if the sequence of real numbers {dn(f, x)} (see (23))
converges, as n > ». In this case, we denote this limit by &f(x). This definition
was introduced by Butzer and Wagner [1975], who identified a large class of functions
on which the pointwise dyadic derivative and the strong dyadic derivative agree a.e.
Skvorcov and the author [1979] observed that anytime &f(x) exists, the classical Dini
derivatives of f satisfy D*F(x) >0 > D f(x). Hence it is impossible for a non-
constant, (classically) continuous function to be dyadically differentiable at all
but countably many points in (0, 1). Since &wk(x) = kwk(x) for all x € [0,1], this
impossibility does not extend to functions continuous on the group.

Schipp [1974] proved a fundamental theorem for the pointwise dyadic derivative.
He showed that if f ¢ L' with ay(f) = O then d(If) = f a.e. (compare with (25)). Pal
and Simon [1977b] obtained this same result for the dyadic derivative on Vilenkin
groups of bounded type. Schipp [1976b] extended his [1974] theorem to handle certain
Stieltjes measures associated with functions of bounded variation. In all these re-

sults the method of proof is to show that the maximal operators
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sup dn(If, x), x € [0, 1].
n>0

are of strong type (p, p), 1 < p < =, and of weak type (1, 1).
Onneweer [1977] showed that on a Vilenkin group G there exist continuous f

which are nowhere dyadically differentiable. He also proved that a Rademacher series
R = Zakrk is dyadically differentiable at x if and only if

Y ma,r (x)

k=0 k7" k
converges, in which case

dR = Z mkakrk(x) (29)
k=0

It follows that a Rademacher series on G is either a.e. or almost nowhere dyadically
differentiable. Moreover, if the dyadic derivative of a Rademacher series is constant
on some open subset of G, then that series is actually a polynomial (see also [1982]
by the author). Thus the non-local property of the dyadic derivative is extreme.

16. Term by term dyadic differentiation. Butzer and Wagner [1975] were first to

examine conditions under which a Walsh series Zakwk represents a dyadically differ-
entiable function f which satisfies

df(x) = kEl ka W, (x). (30)

This problem is completely solved for Rademacher series (see (29)) but is still
open even for lacunary Walsh series.

Several authors have identified conditions sufficient for (30) to hold.
Butzer and Wagner [1975] showed that (30) holds a.e. when the sequences {a,} and
{kak} are quasi-convex and kak +0 as k » =. They also showed that (30) holds every-
where when Xk|ak[ < =, i,e.,, when the derived series is absolutely convergent.

Schipp [1976a] proved that (30) holds for all x # 2™ (n > 0) when kay + 0, as
k ~ ». This result was generalized by Skvorcov and the author [1979], who showed
that if condition (21) holds, and if x # 2" for n > 0, then a necessary and suf-
ficient condition for Af(x) to exist is that the sequence

2"

k (31)
kZO akwk(x)

converges in which case the limit of (31), as n - =, equals &f(x). It follows that

if a +0, if Zkazk >0, as k > », and if the derived series converges then (30) holds
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for x # 2" (n > 0). Also, if ka, > 0 and if

2k

KL lag - agnl =0
as k » =, then df(x) exists if and only if (31) converges, as n -+ «.

Powell and the author [1981] showed that (30) holds for any x which satisfies
T ok%w, (x) <=

ka1 KK
for some o > 1, and that (30) holds for all x € [0,1] if a ¥ 0, as k » =, and
Zlakl < », They also found necessary and sufficient conditions for (30) to hold when
the derived series converges. In fact, if f(t) exists at t = x and t = x + el
(n > 0) and if the right hand side of (30) converges, then a necessary and sufficient
condition for &f(x) to exist is that n

© (J+])2 -1 n
R(x) = lim ] ) j2"a W (x)

MR RS

exist, in which case,

df(x) = kE]kakwk(x) - R(x)

M. UNIQUENESS

17. Uniqueness of Walsh series with monotone coefficients. BalaSov [1971] proved

that if the coefficients of a Walsh-Kaczmarcz series S are convex and decrease
monotonically to zero, then S is the Walsh-Kaczmarcz-Fourier series of some function
in L]. Yano [1951a] had obtained this same result for Walsh-Paley series with "quasi-
convex" replacing "convex". Coury [1974a] showed that quasi-convexity is essential
to this result. Indeed he constructed a Walsh series with monotonically decreasing
coefficients which converges to a non-integrable function and is not a Walsh-Fourier
series.

In the trigonometric case, a series with convex coefficients which decrease
monotonically to zero converges to a non-negative function. Coury [1974a] showed
that this result does not hold for Walsh series. Indeed, he constructed a convex

©

monotone sequence {a } for which W = ) a, W, assumes negative values. He went on
k=0

to show that if the sequence of coefficients is completely monotone, then analogy

with the trigonometric case is restored and W > 0.

Siddiqi [1971] proved that if a + 0, as k » », and if X(ak - ak+])1ogk < = then
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Jagwy is a Walsh-Fourier series.

18. Sets of uniqueness. A set E < [0,1] or 2° is said to be a set of unigueness

(or a U-set) if the zero series is the only Walsh series which converges to zero
off E. Sneider [1949] showed that any countable subset of [0,1] is a U-set and that
the Cantor set formed by removing middle halves is a {U-set. He also showed that any
U-set has Lebesgue measure zero, but not all sets of Lebesgue measure zero are
U-sets. Coury [1970], [1975] found a class of sets of Lebesgue measure zero which
are dense in [0,1] but are not U-sets. Skvorcov [1977b] proved that given any
positive, increasing h on [0,=) with h(0) = O there exists a perfect set E < [0,1]
whose h-measure is zero such that E is not a U-set. Thus the problem of identifying
those perfect subsets of [0,1] which are U-sets is still open.

Gevorkjan [1981] has shown that given any Ek + 0 there is a set E € [0,1] of
0.

measure one such that W = a,w, with wznj + 0 off E and lakl < § implies W
On the dyadic group, more is known. The author [1979a] introduced a group
analogue of H-sets, and showed that every H-set in 2“ is a U-set. Building on this,

Yoneda [1982] proved that every closed subgroup of the dyadic group of Haar measure
zero is a U-set. It follows that a large class of Cantor-like sets in the dyadic
group are U -sets.

Lippman and the author [1980] carried the Pyatetskii-Shapiro structure theorem
over to the group 2°. They showed that any closed U -set in the dyadic group is a
countable union of elementary U -sets. An elementary U-set E is one for which there

exists a sequence of functions f], f whose Walsh-Fourier series are absolutely

IR
convergent and vanish on E, which converges to 1 in the weak * topology (i.e.,
given any pseudo-function A, A(fn - 1) >0, as n»>« ). The author [1971] had
earlier shown that a countable union of closed U-sets is again a U -set. It is not
known whether the condition "closed" can be relaxed in either of these results.

A set E <2 is said to be a U-set for a class 4 of Walsh series, if the hypoth-
esis W € &4, with Nzn(x) +0as n~+»for x £ E, implies that W is the zero series.
Clearly, every U -set for £ is a U-set. Crittenden and Shapiro [1965] proved that a

Borel set E is a U-set for the class of Walsh series which satisfy

Tim 27 n(x + 0) = 0 for all x € [0,1] (32)

N
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if and only if E is countable. The author [1975] introduced classes ?:, 0<ac<l,
which are smaller than the class of Walsh series which satisfy (32), and showed that
a closed set E is a U-set for ?: if and only if E is of a-capacity zero.

19. Uniqueness of approximating Walsh series. Arutunjan and Talajan [1964] proved

that if W is a Walsh series whose coefficients a > 0 as k »=,if f is a finite-
valued integrable function, and if there exist integers Ny <Ny <., such that
}EE Wony (x) = f(x),

for all but countably many x € [0,1], then W is the Walsh-Fourier series of f.
Skvorcov [1968] showed that this result remains true if "integrable" is replaced by
"Perron integrable" and "Walsh-Fourier series" is replaced by "Perron-Walsh-Fourier
series". 1In [1980b], however, he showed that it does not extend to functions which
are Denjoy integrable in the wide sense. A multiple Walsh-Fourier series version
of the result of Arutunjan and Talaljan was obtained by Movsisjan [1974].

Skvorcov has also extensively examined the problem of obtaining uniqueness with
conditions weaker than (33). On the positive side, he proved [1974]1, [1977a] that
if W is a Walsh series whose coefficients tend to zero, if Ny <Ny <... is a sequence
of integers which satisfies-either

2jinj<2j+],j=0,'|,..., (34)
or V(nj) < A < = (see definition above display (16)), and if
Timsup|W_(x)| <M< =
A

for all but countably many x € [0,1], then W is the Walsh-Fourier series of the
function f(x) = Timsup wnj(x), as j ~ . In [1980a] he proved that if W is a Walsh
series which satisfies (32) (a condition weaker than a > 0), if f is a finite valued,
Perron integrable function, and if N <Ny <... satisfies (34), then
Tim Wp.(x) = f(x) (35)
Goreo J
for all but countably many x € [0,1] is sufficient to conclude that W is the Perron-
Walsh-Fourier series of f. On the negative side, he showed [1975] that (35) is not
sufficient for uniqueness to hold if Ny <Ny <... is arbitrary. Indeed, he construct-
ed a non-zero Walsh series W and a sequence of integers {nj} such that wn. + 0 every-

J
where, as j + =.



660 W.R. WADE

Concerning uniqueness of non-convergent Walsh series, Crittenden and Shapiro
[1965] showed that if W is a Walsh series which satisfies (32), if both

Timsup[Won(x)| < = (36)
N->c

and

liminf Nzn(x) > f(x)

n->o

hold for all but countably many x € [0,1], where f is an integrable function, then W
is the Walsh-Fourier series of some g € L]. A portion of their argument which involve:
a rather intricate application of the Baire category theorem has been shortened by
Lindahl [1971]. Ovsepjan [1973] showed that (36) is crucial to uniqueness here. In-
fact, he proved that given any continuous f and any permutation QO, 3],... of the
Walsh functions, there is a Walsh series W = Zakxk such that Hn >f, W > fae.,as
n + o, but W is not the Walsh-Fourier series of f. ‘

Skvorcov [1973a] proved that if W is a Walsh series whose coefficients tend to
zero, if f is an integrable function, and if

liminf wzn(x) < f(x) < limsup Nzn(x) (37)
N N

for all x € [0,1]vE, where E is a closed U-set, then W is the Walsh-Fourier series
of f. The author [1977] proved that if (37) holds for x € [0,1]rE, where E is a
countable set, and if (32) holds for x € E and all dyadic rational x, then W is

the Walsh-Fourier series of f. (See [1980] by the author also).

For many years the problem of uniqueness for (C, 1) summable Walsh series was
open. Crittenden [1964] made some progress toward this problem, but never published
his results. Skvorcov [1976b] solved the problem with an elegant proof that if W
is a Walsh series which satisfies (32) and if the Cesaro sums of W satisfy

Timsup|oon(x) | <
n->o

for all but countably many x € [0,1], and

1im czn(x) = f(x) a.e.,
N

for some Perron integrable f, then W is the Perron-Walsh-Fourier series of f.
20. Null series. A non-zero Walsh series which converges a.e. to zero is called a
null series. Thus null series provide counter examples for certain conjectures

concerning uniqueness. For example, Schipp [1969b] showed that non-negative partial
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sums is not a sufficient condition for uniqueness; he constructed a null series W
which satisfies W > 0 for n > 0.

Coury [1973] constructed a non-zero lacunary Walsh series which converges to
zero on a set of positive measure, but proved that there are no lacunary null series.

Skvorcov [1976a] proved that a null series can diverge to +~ on perfect sets.
Thus to insure uniqueness, conditions like (36) must hold for all but countably many x.

Skvorcov [1977c] also examined how fast the coefficients of a null series can
converge to zero. By the Riesz-Fischer theorem they cannot converge to zero arbitrar-
ily fast. He proved that given Mn + ® as n > =, there exists a null series W whose
coefficients satisfy

n

2
Ya <M,n>1
k=1 k n

He also obtained ihis result for Vilenkin groups of bounded type [1979].

21. Closing comments. Up to this point we have mentioned some specific questions

which have not yet been answered. In this final subsection we speculate about the
future in a more general way.

The study of pointwise dyadic differentiation is in its infancy. The initial
idea that & kept track of zero crossings has not been exploited. Moreover, even
obvious problems, such as finding conditions under which fn + f implies &fn > &f,
remain unexplored. More information of this type could help decide whether the oper-
ator f » &f is really "differentiation" or merely a special multiplier.

Another frontier is provided by the spaces dyadic H! and dyadic BMO. Questions
which need addressing include: Which Walsh series results known for Lp, p>1(re-
spectively, p = =) can be extended to dyadic H! (respectively, dyadic BMO)? Which
classical trigonometric results about H] and BMO have Walsh analogues? For example,
if f € dyadic H' is of bounded variation, does WLf] converge absolutely? In view of
the result of Davis [1980], cited in the introductory section above, gxggjg.H] con-
tains information about classical H]. Garnett and Jones [1982] have used this con-
nection to show how classical results can be obtained more easily by Tooking at the
dyadic case first. Perhaps Walsh series will begin to provide theorems eventuating in
trigonometric analogues which solve long standing problems, or in trigonometric

proofs which are simpler than those now known. Specific suggestions include
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determining which perfect subsets of [0,1] are sets of uniqueness for Walsh series,
resolution of whether every Borel set of uniqueness for Walsh series is a set of first

category, and a new proof of a.e. convergence of LP Walsh-Fourier series p > 1.

Finally, work on multiple Walsh series has just begun. Earlier it was held that
since 2“ x 2” is homeomorphic and isomorphic to 2%, nothing new would be gained by
studying such Walsh series. However, pulling back results from 2° x 2° to 2* via
such a homeomorphic isomorphism forces a non-standard enumeration on the characters
of 2°. Thus multiple Walsh analysis provides a new way to study rearrangements of
Walsh series. Since most rearrangements which arise in this way are rather wild (not
even dyadic block rearrangements), there is surely good reason to study Walsh series
in higher dimensions.
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