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ABSTRACT. The n-dimensional distributional Mellin transformation is developed

using the testing function space M and its dual M’ The standard theorems on
c,d c,d"

analyticity, uniqueness and continuity are proved. A necessary and sufficient

condition for a function to be an n-dimensional Mellin transformation is proved by

the help of a boundedness property for distribution in M’c,d"

transform formulas are also introduced.

Some operational
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1. NTRODUCTION.

The Mellin transformation was previously extended to certain generalized

functions by Zemanian [i] and Fung Kang [2]. In the present paper, we develop the

n-dimensional distributional Mellin transformation.

For the sake of brevity, we shall use the following notations. R
n

and C
n

are

respectively real and complex n-dimensional euclidean spaces. The symbols z and s

stand for elements of C
n

representing the n-triples (Zl,Z 2 ,Zn) and (Sl,S2,...,sn)
C
n

Rn, t Rn, Rn, Rn and s + i A
respectively. We take x

function on a subset of R
n shall be denoted by h(x) h(Xl,X2 ,Xn). By [x] we

mean the product Xl,X2, .,x Thus, [xs] Xl
sl

x2
s SnL,... ,x where

n n

-st
_{Sl,S2,...,sn and [e exp(-Sltl-’’’-snnt). By log x we mean

s
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{lOgXl,... logxn} and, by xt, we mean {Xltl,X2t2,...,x t Also
n n

s s sn -st -s t -Sntn
x {x

I Xn and e {e 1,...,e }. The notation x _< y and x < y

mean respectively x -< y and x < y ( 1,2,...,n). The letters k and m shall

denote non-negative integers in Rn, i.e., ku and m are non-negative integers.
k

Letting k kI + k
2 + + k D

k
shall denoten’ x k x2k2OxI OXnkn

By a smooth function we mean a function that possesses partial derivatives of all

orders at all points of its domain.

2. THE TESTING FUNCTION SPACE M
cd"

Let R denote the open domain 0 < x < oo. We define Nc,d(X) as the product
n

function H Dc (xv)
=i ,d

-c < i/ex if 0 < x
where c,d(X) Ix-d if e < x <

In fact M is the linear space of all smooth functions f(x) defined on R with
c,d

values in CI which satisfy the following set of inequalities

For each non-negative integer k,

lc,d(X) [xk+l] Dk f(x)Qkx 0 < x < oo. (2.1)

Qk denotes constants which depend upon the choices of k and f.

Any smooth function whose support is contained in R, is in M
c,d"

bers of M are Ixs-l] for c -< Re s d and [(log x)
k

xs-l] for c < Re s < d.
c,d

v represents a seminorm defi6ed by

(f) max sup lc d(X [xk-l] Dk f(x) I. (2.2)
O_<[k[< x x

Of course, the collection f} is a multinorm, being a separating collection

of seminorms. Thus we can assign to M the topology generated by {}c,d

A sequence {f is a Cauchy sequence in M if and only if each f M
=i c,d c,d

and, for each fixed k, the functions c,d(X) [xk+l] Dkx fv(x.. converges uniformly on

n
R$ as v oo. Hence, Mc,d is sequentially complete.

THEOREM 2.1. The mapping

f(x) [e-p] f(e-p) g(p) (2.3)

Other mem-

is an isomorphism from M into L wlere L denotes the testing function spacec,d c,d c,d
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defined by Sinha [3].

The inverse mapping is given by

-ig(p) Ix f(-log x) f(x) (2.4)

PROOF. The proof of this theorem is easy and is therefore omitted.

3. THE DUAL SPACE M’
c,d"

M’ is the dual space of M Multiplication by a complex number, equality,c,d c,d"
and addition are defined in the usual way. In fact, M’ is a linear space over

c,d

CI. By <h, f> we mean a number that h M’ assigns to f M If the supportc,d c,d"
(,Miller [4], 1.6) of a distribution h is contained in a compact subset of R, then

h M’ R
n n

c,d’ c,d with c < d. Also, every member of M’ is a distribution on R+.c,d

Let us define a (weak) topology for M’ by using the following separatingc,d

set of seminorms. For every f Mc,d, we define a seminorm f(h) on M’c,d by

f(h) I<h,f>[, (h M’,d).c
In fact, a sequence {h }o M’ d)=l(h is a Cauchy sequence in M’ if and only if,c, c,d

for all f e M the numerical sequence {<hv,f> convergesc,d’ v=l

We can easily prove that M’ is sequentially completec,d

In view of Theorem i, we can relate to each h(x) M’ a distribution
c,d

h(e-p) L’ (see [3]) by
c,d

<h(e-P), g(p)> <h(x), f(x)>. (3.1)

Conversly, if (p) e L’ then (-log x) M’ is given byc,d’ c,d

<(-log x), f(x)> <(p), g(p)>. (3.2)

Using (3.1) and (3.2), we can easily have the following theorem:

THEOREM 3.1. The mapping h(x) h(e-p) defined by (3.1), is an isomorphism

from M’ L’
c,d

onto c,d" The inverse mapping is given by (3.2).

4. THE n-DIMENSIONAL DISTRIBUTIONAL MELLIN TRANSFORMATION M.

DEFINITION. We define the n-dimensional distributional Mellin transformation

as the function H(s) on 2h into C
I
by

(Mh)(s) H(s) <h(x), [xS-l] > for s e $h’ (4.1)

where

_
is the tube of definition of the n-dimensional distributional Laplace
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transformation (see [3]).

In fact, the R.H.S. of (4.1) has a meaning because the application of h M’
c,d

to [xs-l] Mc,d"

Setting g(p) [e-sp] and f(x) [x-1] g(-log x) [xs-l] and using Theorem

2.1, we can-have the following theorem:

THEOREM 4.1. The distribution h(x) is n-dimensional Mellin transformable if

h(e-p) is n-dimensional Laplace transformable. In such a case, Mh(x) H(x) Lh(e-p)

for ever s 5.
Using Theorems 2.1 and 3.1, we can have the following theorems:

THEOREM 4.2. (The Analiticity Theorem). If Mh H(s) for s h’ then H(s)

is analytic on and

H
s <(log xu) h(p), [xS]>, s e h" (4.2)

The proof is analogous to that given in [3].

THEOREM 4.3. (The Uniqueness Theorem). If Mh H(s) for s h and Mg G(s)

for s g, if n g is non-void, and if H(s) G(s) for s n g, then h=g

in the same sense of equality in M’c,d where c,d e h and c < d. The proof is ana-

logous to that given in [3].

THEOREM 4 4 (The Continuity Theorem). If {h }
=I

converges in M’ to h
c,d

for some c,d e R (c < d) and if Mhv H(s), then Lh H(s) exists for at least

c < Re s < d and {H (s) converges pointwise in the tube of definition
=i

c < Re s < d to H(s).

PROOF. Since [xs] is in M for each s satisfying c Re s d, the theorem
c,d

follows from the definition of convergence in M’ and the fact that M’ is se-
c,d c,d

quentially complete.

5. A BOUNDEDNESS PROPERTY FOR DISTRIBUTIONS IN M’
c,d"

]
For each h M’c,d, there exists a non-negative integer r R and a positive

constant c R# such that, for all in M
c,d’

l<h,>l < c (). (5.1)
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6. A NECESSARY AND SUFFICIENT CONDITION FOR M(s) TO BE AN n-DIMENSIONAL MELLIN
TRANSFORM.

A necessary and sufficient condition for a function M(s) to be the n-dimen-

sional Mellin transform of a distribution h is that there be a tube c < Re s < d

(c < d) on which M(s) is analytic and bounded when

IM(s) <

where P(Isl) is a polynomial in sl.

(6.1)

It can be easily proved by using the boundedness property of Section 5 and

(Bochner [6], Theorem 60, p. 242 and 4, p. 244).

7. SOME OPERATIONAL TRANSFORM FORMULAS FOR THE n-DImeNSIONAL DISTRIBUTIONAL
MELL IN TRANSFOPMAT ION.

Let us suppose that Mh(p) H(s) for s e h and p R Cn. We can easily

have the following operational transform formulas (Using Theorem 4):

(ii) M Dkp h(p) s
k H(s), s e h’

(12) M{[x]}h H(s + ), s + a e ,
(13) Mh (log x) H(-s), -s e ,
(14) Mh{%(-log x)} [T-I] H(s/T), s/ e , > 0.

Also, by using Theorem 5, we can have

(15) M{(-log x)
k

h(-log x)} (-) Ikl D
k H(s) s e hS
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