RESEARCH NOTES

DUAL CHARACTERIZATION OF THE DIEUDONNE-SCHWARTZ THEOREM ON BOUNDED SETS

C. BOSCH, J. KUCERA, and K. McKENNON

Department of Pure and Applied Mathematics Washington State University Pullman, Washington 99164 U.S.A.

(Received August 3, 1982)

ABSTRACT. The Dieudonné-Schwartz Theorem on bounded sets in a strict inductive limit is investigated for non-strict inductive limits. Its validity is shown to be closely connected with the problem of whether the projective limit of the strong duals is a strong dual itself. A counter-example is given to show that the Dieudonné-Schwartz Theorem is not in general valid for an inductive limit of a sequence of reflexive, Fréchet spaces.

KEY WORDS AND PHRASES. Locally convex space, inductive and projective limit, barrelled space, bounded set.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. Primary 46A12, Secondary 46A07.

1. INTRODUCTION

This paper is written for those with at least an elementary knowledge of the theory of locally convex spaces. A good reference is the book of Schaeffer [1]. Let $E_1 \,\subset E_2 \,\subset \ldots$ be a sequence of locally convex, Hausdorff, linear topological spaces such that each E_n is continuously contained in E_{n+1} , and such that the union $E = \bigcup_{m=1}^{\infty} E_m$ is Hausdorff as a locally convex inductive limit. It is obvious that any bounded subset of a space E_n is also bounded in E. If <u>each</u> bounded subset of E arises in this way, we shall say that the DSP (Dieudonné-Schwartz Property) holds. A well-known theorem of Dieudonné-Schwartz states that the DSP holds provided each E_n is closed in E_{n+1} and has the topology inherited from E_{n+1} (see [1] or [4] II.6.5).

In duality theory an increasing sequence $E_1 \subseteq E_2 \subseteq \ldots$ corresponds to a decreasing sequence $F_1 \supseteq F_2 \supseteq \ldots$ where each F_n is dual to E_n . The intersection $F = \bigcap_{m=1}^{\infty} F_m$, endowed with the projective limit topology induced from the weak topologies $\sigma(F_n, E_n)$, may be identified with the dual of E relative to the weak topology $\sigma(F, E)$ ([1] IV.4.5). In applications the strong topologies $\beta(F_n, E_n)$ are often of interest, along with the projective limit $\pi(F)$ induced by these on F. The strong topology $\beta(F, E)$ is always at least as fine as $\pi(F)$. The problem of determining when $\pi(F)$ equals $\beta(F, E)$ turns out to be closely connected with determination of the validity of the DSP. A precise statement of this is given in the theorem below.

2. THE QIU PROPERTY

Recent work by Qiu [2] suggests a slight relaxation of the DSP. Let **B** be the set of all subsets B of E such that B is bounded in some E_n . We say that the QP (Qiu Property) holds if each bounded subset of E is contained in the <u>closure</u> of some B \in **B**.

For spaces V and W dual to one another, and a subset S of V, we write \overline{S}^V for the $\sigma(V,W)$ -closure of S in V and S°^W for the polar of S in W. Thus, if <S> denotes the convex hull of S, the Bipolar Theorem ([1] IV.1.5) states that $\overline{\langle S \rangle}^V = (S^{\circ W})^{\circ V}$. We note for use below that the polars of the closed, radial, convex bounded subsets of V are just the barrels of W, and vice versa.

THEOREM. A necessary and sufficient condition for the QP to hold is that $\pi(F) = \beta(F,E)$.

PROOF. Suppose first that $\pi(F) = \beta(F,E)$, and let B be an arbitrary bounded subset of E. Then $B^{\circ F}$ is a barrel and so contains a $\beta(F,E)$ -open neighborhood of 0. From $\pi(F) = \beta(F,E)$ now follows that there is a barrel A in some F_n such that $A \cap F \subset B^{\circ F}$. Letting $D = A^{\circ E_n}$, we see that D is bounded in E_n and $D^{\circ F_n} = A$. Because $D^{\circ F}$ is just $D^{\circ F_n} \cap F = A \cap F$, we have $D^{\circ F} \subset B^{\circ F}$. Consequently, $B \subset \overline{\langle B \rangle^E} = (B^{\circ F})^{\circ E} \subset (D^{\circ F})^{\circ E}$. Since the Bipolar Theorem guarantees that $(D^{\circ F})^{\circ E}$ is just the closure of D in E, we have shown that the QP holds.

Now suppose that the QP holds, and let A be an arbitrary barrel of F. Then $A^{\circ E}$ is bounded and so there exists a bounded set B of some E_n such that $A^{\circ E}$ is in the closure \overline{B}^E of B in E. Since $B^{\circ F} = B^{\circ F_n} \cap F$ and $B^{\circ F_n}$ is a barrel (being the polar of a bounded set), it follows that $B^{\circ F}$ is a $\pi(F)$ -neighborhood of O. But we have

 $B^{\circ F} = (\overline{\langle B \rangle}^E)^{\circ F} \subset (A^{\circ E})^{\circ F} = A.$

We have shown that $\beta(F,E) \subset \pi(F)$. The reverse inequality is evident. Q.E.D. 3. COUNTER-EXAMPLE

It was demonstrated in [3] that the DSP holds when all the E_n are reflexive Banach spaces. The following example shows that, for reflexive Fréchet spaces, even the QP may fail to hold.

For each $n \in \mathbb{N}$, let D_n be the region $\mathbb{R} \setminus \{1, 2, ..., n\}$ and let E_n be the linear space of functions infinitely differentiable on D_n . For $n, m \in \mathbb{N}$ let $K_{n,m}$ be the compact set $\{x \in D_n : |x| \le m, |x - j| \ge \frac{1}{m} \text{ for all } j = 1, 2, ..., n\}$ and, for each $f \in E_n$, let

$$\|f\|_{n,m} = \sup\{m|f^{(i)}(x)|: x \in K_{n,m}, i = 0,1,...,m\}.$$

Then each E_n , equipped with the locally convex topology generated by the family $\{ \| \|_{n,m} : m = 0, 1, ... \}$, is a nuclear Fréchet space ([4] III.8.3). Hence each E_n is a Montel space ([4] III.7.2, Corollary 2) and thus reflexive. We proceed to show that $E = \bigcup_{m=1}^{\infty} E_n$ does not have the QP.

For each $n \in \mathbb{N}$, and $x \in \mathbb{R}$, let $f_n(x) = (x - n)^{n-\frac{1}{2}} e^{-(x-n)^2}$ and let $c_n = \sup\{|f_n^{(i)}: x \in D_n \setminus [n-1, n+1], i = 0, 1, \dots, n-1\}$. Clearly, each f_n is in E_n . Let V be any neighborhood of 0 in E. Then, for some $m \in \mathbb{N}$, the $|| ||_{1,m}$ -unit ball W of E_1 is contained by V. Evidently $\frac{1}{nc_n} f_n$ is in W for $n = m + 1, m + 2, \dots$. Consequently there exists k > 0 such that $h_n = \frac{1}{nc_n} f_n \in kV$ for all $n \in \mathbb{N}$ —that is, then set $B = \{h_n: n \in \mathbb{N}\}$ is bounded in E.

Let D be a bounded subset of one of the spaces E_n . Then the number

$$M = \sup\{ |h^{(n+1)}(x)| : x \in [n + \frac{1}{2}, n + \frac{3}{2}], h \in D \}$$
(3.1)

is finite. Let p be the polynomial (with non-vanishing constant term) such that

$$h_{n+1}^{(n+1)}(x) = (x - n - 1)^{-\frac{1}{2}} p(x) e^{-(x-n-1)^2}$$
 for all $x \in D_{n+1}$.

Evidently there exists some r > 2 such that

$$\inf\{|h_{n+1}^{(n+1)}(x)|: x \in [n+1-\frac{1}{r}, n+1-\frac{1}{2r}]\} \ge M+2.$$
(3.2)

Let K be any integer larger than $\frac{1}{2r}$ and n + 1. For each $m \in \mathbb{N}$, let S_m be the $\|\|_{m,k}$ -unit ball of E_n . Then, for each $g \in S_m$, we have

$$\sup\{|g^{(n+1)}(x)|: x \in [n+1-\frac{1}{k}, n+1-\frac{1}{2k}]\} \le 1.$$
(3.3)

Evidently this last inequality also holds for all g in the convex hull H of the union ∞ \cup S. From (3.2) and (3.3) follows that the set $h_{n+1} + H$ is a neighborhood of h_{n+1} in m=1 E such that, for each g $\in h_{n+1} + H$,

$$\inf\{|g^{(n+1)}(x)|: x \in [n+1-\frac{1}{k}, n+1-\frac{1}{2k}]\} \ge M+1.$$
 (3.4)

Hence, (3.1) and (3.4) imply that D \cap (h_{n+1} + H) = ϕ . Thus the QP does not hold.

REFERENCES

- 1. Schaefer, H. H. Topological Vector Spaces, McMillian, New York, 1966.
- 2. Qiu, Jing Huei. Some results on bounded sets in inductive limits (to appear).
- Kucera, J., and McKennon, K. Dieudonné-Schwartz Theorem on bounded sets in inductive limits, Proc. Amer. Math. Soc. 78 (1980), 366-368.
- Dieudonné, J., and Schwartz, L. La dualité dans les espaces (F) et (LF), <u>Ann.</u> <u>Inst. Fourier (Grenoble)</u> <u>1</u>. (1942), 61-101.