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ABSTRACT. Fixed point theorems are proved for contraction maps on M-convex spaces.
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1. INTRODUCTION.

Since Banach published his pioneering work on fixed points, various extensions in

multidirections have been achieved by Brouwer, Kakutani, Browder, Edelstein, Kannan,

Soardi, Rkotch, Reich, Chi Song Wong, Heir and Kepler, Hardy and Rogers, Chatterjee

and many others. The ones relevant to our work are due to Edelstein [i], Kannan [2],

Reich [3], Wong [4] and Hardy and Rogers [51. In fact, Kannan [2] proved that, if K

is a weakly compact convex subset of a reflexive Banach space and if for every closed

convex subset H with T(H) H, (H) > 0, inf fly TYll < (H) and if T is a self-map
yH i

of K such that for every pair of points x,y K, lrx- Tyll < {I Ix-Txl I+I Iy-Tyl I},

then T has a fixed point. Reich proved that, if K is a weakly compact convex subset

of a Banach space and T is a self-map of K such that there exist {ai }5 a
i

> 0
i=l’

ai I, and for every pair of points x,y K, lTx TYll -< all Ix Yll + am11x-Tl +

a311Y TYl I, then T has a fxed point. Hardy and Rogers extended this result to me-

tric spaces as follows. If (X,d) is a complete metric space and T is a self-map of X

such that there exists {ai}5i=l’ ai > 0, Ya
i

< i and d(Tx, Ty) < ald(X,y) + a2d(x, Tx)+

a3d(Y Ty) + a4D(x Ty) + a5d(Y, Tx) for every pair of points x,y X, then T has a

fixed point. The conditions that X is compact and T is continuous are sufficient if

the condition 7.ai < 1 is changed to lai I. Wong generalized the results of Edelsteln,
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Kannan and Reich by way of proving that, if X is a convex subset of a normed linear

space and T is a self-map of X such that there exist {ai}5i=l a
i

> 0, Y.a
i

I and for

all x,y X, llrx- Ty]l _< alllX- Yll + amllX- Txll + aBllY Tyl] + a4]Ix TYll +

a5[ [y Tx[l, then T has a fixed point and this point is the limit of Xn where

Xn (i- t)Xn_1 + tTXn_l, t (0,i). In fact, Edelstein’s result follow from Reich

if a
2

a
3

a
4

a
5 0; Kannan’s result follows by putting a

I 0, a
2

a 3
1/2;

Reich’s result can be deduced by substituting a
4

a5 0. Ours is a further generali-

zation of all the above results from two angles, one being the liberation of the se-

lection conditions on al, a2, a3, a4, a5. The other is by putting TM x x for every

x. We have throughout the M-convexity theory assumed the minimum possible geometric

condition of the existence of an intermediate point for every pair of points in a me-

tric space. The results of Hardy and Rogers follow just by immitating our proof with

the substitution TMX x for every x, in which case the condition of commutativity of

T and T
M
becomes redundant just as the existence of an M-convexity point is. The re-

sults of Chatterjee [6] and Ghosh [7] also follow immediately from our theorem.

DEFINITION. A metric space (X,d) is said to be M-convex if for every pair of

points x,y in X, there exists another point z in X such that d(x,y) d(x,z) + d(z,y).

For strictly M-convex space and other related notions, the readers are referred

to Chatterjee [8].

Let (X,d) be an M-convex metric space. Then we can make the following definition.

DEFINITION. A self-map T on X is said to be a generalized mean value contraction

if, for every pair of points x,y e X, there exist non-negative real numbers al, a2,

a
3, a

4 and a
5 such that

d(TTMX TTMY < ald(X,y) + a2d(x TT) + a3d(Y TTMY)
+ a4d(x TTMY + a5d(Y TTMX), (I.i)

5
where Y. ai < i and Tf is the point obtained from the M-convexity as follows

i=l
d(x, Tx) d(x, TMX) + d(TMX Tx).

5 5
If the condition Y. a. < I is changed to Y. a. 1 in the above, the said selF-

i=l i=l

map T will be called a generalized mean value non-expansive mapping.

Examples of such contractions and non-expansive mappings occur abundantly. We

give one example.
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EXAMPLE. Let X x Q; 0 < x < i} where Q is the set of rational numbers and

let d(x,y) Ix- Yl. Then (X,d) is an M-convex metric space. Now we define a self-

map T on X as follows

Tx 1 x if 0 -< x _< 1
2

1 i
x - if <- x -< I.

Then it is easy to prove, by taking TMX to define the usual midpoint of x and Tx, that

T is a generalized mean value contraction (c.f. Wong [4]).

THEOREM i. If T is a generalized mean value contraction from an M-convex complete

metric space (X,d) into itself and T and T
M

commute on X, the derived set of X, then

T has a unique fixed point.

PROOF. Let Xo X. Define Xn+I TTMXn, n 0,1,2,3, Putting x Xo and

y xI in (i.i), we get

d(xl,x2) < ald(Xo,Xl) + a2d(Xo,XI) + a3d(xl,x2) + a4d(Xo,X2)
4

for some {ai}4 a
i

< i, a. > O,
i=l i=l

m
(2.1)

Again putting x x
I

and y Xo in (I.i), we obtain

d(x2,xl) < a’Id(Xl,Xo) + a2d(Xl,X2) + a3d(Xo,XI) + a5d(Xo,X2)
5
y.for some {a’},1. i 1,2,3,5, a’

i
< i, ai>O (2.2)

i=l
i=4

Adding (2.1) and (2.2), we now get

2d(Xl,X2) < (al+a2+a+a’3) d(Xo,XI) + (a2+a3) d(Xl,X2) + (a4+a5) d(Xo,X2)

Or (2-a2-a3) d(Xl,X2) < (al+a2+al+a3) d(Xo,Xl) + (a4,a5) d(Xo,Xl) + (a4+a5) d(Xl,X2)

Or ’!(2-a2-a3-a4-a5) d(Xl,X2) < (al+a2+al+a3+a4+a5) d(Xo,XI)

al+a2+ai+a+a4+aOr d(Xl,X2) < Pld(Xo,Xl) where 01 2_a_a3_a4_a
4 4

By virtue of the conditions a
i

< 1 and a’.1 < i, it is easy to see that 0 <01< i.
i=l i=l

By induction, we can prove that

d(Xn,Xn+I) < pl,P2,p3 On d(Xo,Xl),
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where 0 < 0. < i for j 1,2, n.

So {x is a Cauchy sequence and therefore by completeness {x converges to, say .
n n

Then

d(, TT) < d(, Xn+I) + d(Xn+l, TT)

_< d(, Xn+l) + d(TTMXn, TT)

< d(, Xn+l) + ald(Xn, ) + a2d(Xn, TTMXn)
+ a3d(, TTM + a4d(xn, TTI) + asd(, TTMXn)

-< d(, Xn+l) + ald(Xn, ) + a2d(Xn, Xn+I)

+ ad(, TT)+ ad(Xn, TT)+ ad(, Xn+l)

") d( TT) as n_< (a +a
4

Thus d(, TTM) O.

This implies TTM .
Now, we proceed to prove that is the fixed point as desired.

d(, ) d(TT, T(TT))

d(TT, T(TM 1%)) [since TT TMI% for X’]

d(TT, TTM(T))

_< al’’’d(, 1%) + a’d(, TTM()) + a’d(T, TT)

d (1% TT+ a’d( TTM()) + a
5

_< al’’’d(, ) + a2’’’d(, 1%) + a’d(, 1%)

+ a’d(,. ) + a’d(, T)

5
d(, 1%) < 0 since . a’." < i.

1
i=l

Thus d(, T) 0 which implies T i.e. is a fixed point. The uniqueness

is easy to verify.

This completes the proof.

REMARK. One should note that in the above theorem, we have used completeness on-

ly in getting the limit and we have used the commutativity of T and T
M

only for .
So we have actually proved the following more general theorem.
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THEOREM 2. If T is a generalized mean value contraction from an M-convex metric

space (X,d) into itself and there exists a point x X such that
o

(1) x converges to a point when x TTM Xn+1 and
n n

(ll) TTI TM
then T has. a unique fixed point. The following theorem now follows from the above

theorem.

THEOREM 3. Let (X,d) be a strictly M-convex compact metric space and T be a gen-

erallzed mean value non-expanslve mapping from X into itself such that T and TM com-

mutes on X, then T has a fixed point.

PROOF. Define f(x) d(x, Tx).

Then the continuity of d gives the continuity of f. Now X being compact, f attains

its minimum at a point, say x X.
O

If d(Txo, xo) 0, then Xo is the fixed point.

So suppose TXo Xo, i.e. d(x- Txo)_ > 0.

Then f(TTM xo) d(TXo, T(TTMXo))

d (TTMXo, TTM(Txo)

< d(Xo, TXo) by strict M-convexity and Theorem 2.

f(xo), a contradiction.

Hence T o x
x o

REMARK i. We can drop the condition of strict M-convexity if we take "a general-

ized mean value contraction" in place of non-expansive mapping".

REMARK 2. Our method of proof in the above theorems is a substantial modification

and fusion of the methods due to Hardy and Rogers [5] and Wong [4].

3. APPLICATIONS.

Since the inception, the fixed point notions have found ninny glorious applications

in the fields of Economic Stability Theory, the Theory of Differential Equations, Con-

trol Theory, the Theory of Integral Equations, and Fluid Dynamics. The existence pro-

blems which are fundamental in mathematics, have often been solved by the fixed point

theorems. We feel that our theorems can be applied to more general situations than

ever, since ours is applicable to F-spaces, Frechet spaces, and, more generally, to
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metric spaces with the minimum geometric structure. We give below a nice application

in a situation where the basic space is not linear, but a metric space with the mini-

mum geometric structure.

EXAMPLE. Let X {ei0, 0 < 0 < 2 }. Then X is a complete M-convex metric space

i01 i02)where the metric d is defined as d(e e 181 821. We take, in particular,

i0
T (ei0) 0)the midpoint of the arc between e and where Te

i
is definedT

M
to represent

(ei0) i0/2
as T e Here it is easy to show that T satisfies all the conditions of our

Theorem 1 and hence the existence of a fixed point of T is guaranteed. In fact, the

i0
point e i.e. i, is the fixed point.
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