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ABSTRACT. Let {Xnk: k,n 1,2 be an array of row-wise independent random

elements in a separable Banach space. Let {ank: k,n 1,2 be an array of

Voo voo R
+

real numbers such that /-k=l lank -< 1 and Ln=l exp(-a/A < for each c e where
n

V 2 VooAn kk=l ank. The complete convergence of l’k=l ank Xnk is obtained under varying

moment and distribution conditions on the random elements. In particular, laws of

large numbers follow for triangular arrays of random elements, and consistency of the

kernel density estimates is obtained from these results.
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I. INTRODUCTION AND PRELIMINARIES.

Wei and Taylor [i] obtained the convergence of [k=l ank Xk in probability and

with probability one by assuming tightness (given e > 0 there exists a compact set K

such that sp P[X K e and uniformly bounded pth (p > i) moment conditions on
n E

the sequence of random elements {X in separable Banach spaces. Howell and Taylorn

[2] proved Marcinkiewicz-Zygmund type weak laws of large numbers for the weighted sum

Vn {Xnkkk=l ank Xnk of arrays of random elements in Banach Spaces satisfying cer-

tain geometric conditions. In this paper a stronger mode of convergence, complete

convergence, is obtained for Lk=l ank Xnk in separable Banach spaces with less re-

strictive conditions than the results of Wei and Taylor and without assuming geometric
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conditions on the spaces. The format for these results was motivated in part by the

form of the kernel density estimates (which are weighted sums of arrays of random

elements) and by the relative absence of laws of large numbers for arrays of random

elements.

Let E denote a real separable Banach space with norm If Let (, A, P)

denote a probability space. A random element X in E is a function from into E

which is A-measurable with respect to the Borel subsets of E. The expected value of

X is defined to be the Pettis integral (when it exists, see pp. 38-41 of [3]) and is

th
denoted by EX. The p moment of a random element X is E( IxI p) where E is the ex-

pected value of the (real-valued) random variable lXl p. The concepts of independ-

ence and identical distributions (i.i.d.) have direct extensions to E. A sequence of

random elements {X is said to converge completely to the random element X if
n

n=iP[IIXn-XII > ] < for each > 0. Since P[n$1[IlXn XII > eli

n=iP[l]Xn Ell > ] < , complete convergence implies convergence with probability

one, but the reverse implication need not hold. Because of the methods of proof,

complete convergence will be obtained for the results of this paper rather than (the

standard) convergence with probability one.

2. The Complete Convergence of Weighted Sums.

In this section complete convergence for weighted sums of arrays of random

elements is obtained. Since no geometric conditions are assumed on the space, it is

easy to show that moments conditions alone will not suffice. Thus, sigma compact

support or uniform compact integral conditions will be assumed on the distributions

of the random elements. Throughout this section {Xnk} will denote an array of random

elements in a separable Banach space E such that {Xnk: k e I} are independent for

each n. Moreover, {auk} will always denote an array of real numbers such that

k=l lank I and n=l exp[-/An < (2.I)

for each > 0 where A
2

n k=l auk"

First, the complete convergence of the weighted sums will be obtained when the

random elements are restricted to a compact subset with probability one. This result

will allow consideration of the random elements which are truncated to compact subsets
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and the corresponding parts off the compact subsets.

THOREM I. Let K be a compact subset of a separable Banach space E. If {Xnk}
is an array of random elements in E such that [Xnk: k -> i} are independent for each

n and such that P[Xnk e K] i and EXnk 0 for all n and k, then,

I.k=l ank Xnkll 0 completely.

PROOF. It can be assumed that K is convex and symmetric and 0 K (wlog). In

the dual space E there is a countable set S {f with If I[ 1 which separate
i i

points of K. Also, for each e > 0 there exists {fl ’fm S such that

m
{x e K: II x II > E} u {x e K: [fi(x)I > }. (2.2)

i=l

Nxt, for h }’k ankl - ’P by on,,xty that )k-- ank Xk K wt

probability one. Hence, for each e > 0 and each n

P[-i l.k=1 ank Xnkll > g]

(2.3)

For each fi, E[fi(Xnk) 0 for all n and k, and fi(Xnk) < If fi I(sup If x If)
xK

with probability one. Hence,

F2t2
E[exp(t fi(Xnk))] < e

or {fi(Xnk)/F} are sub-Gaussian with parameters -< 2

Chow [4],

112

(2.4)

for each i. By Theorem 2 of

i
(Xnk) - 0 completely[k=l ank fi (2.5)

for each f.. Combining (2.3) and (2.5), it follows that for each

n=l
PC llk=l ank Xnkll > c] < =. ///

Using truncation to a compact subset and Theorem i, a strong law of large

numbers will be proved for triangular arrays of random elements.

THEOREM 2. Let {Xnk} be an array of random elements in a separable Banach

space E satisfying
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(i) {Xnk k > i} are i.i d for each n,

(ii) EXnk 0 for all n and k,

(iii) ’n=l E(IIXnl II2q)/nq < for some q 2 i, and

(iv) given e > 0 there exists a compact subset K such that

lim sup E(IIXnlII I[ K]) < e.
n Xnl

Then,

1 n If 0 completelyI k=l Xnk

PROOF. Given > 0 choose K compact, convex, and symmetric with 0 K such

that

i n ii i[ < E

limn sup k=l E(I IXnk Xnk Ke] (2.6)

by (iv) and (i). Define

Ynk Xnk l[XnkL e Kg]
and Znk Xnk IF_Xnk K ]" (2.7)

Using ank in for k i,..., n and ank 0 for k > n, it follows that An I and

’n-l- exp[-<I/An ’n-l- exp[-an] < oo.

Since {Ynk EYnk} take their values in 2K,

=i P[IIk=l ank(Ynk EYnk) II > ]< (2.8)

by Theorem i.

For each n and k

Eli IZnkl] E ]Znkll 12q _< 22q E IIXnkl 12q (2.9)

Thus, for each > 0 and each n

1 n gP[[- .k=l([ [Znk[[ E[ [Znk [[)[ > -]

-< (en/4)-2q EF’ln-k=l(IIZnkll EIIZnkIl)I2q]
< (en/4) -2q CI

n
q Eli IZnll[ EI IZnlll 12q] (2.10)

by Marcinkiewicz-Zygmund’s inequality (rf: Corollary 2.1, Woyczynski F,5]).
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From (2.9), (2.10) and (iii),

n’n=l P[I- k=l(i lZnkll EllZnkl I)i >

< C2 ’--1 E(][Xnl li2q)/nq < (2.11)

where C2
is a constant independent of n. Finally,

nn=l P[II Ln=I Xnkll > ]

i nn=l P[II Ik=l(Ynk mYnk) > ]

+ ln=l P[]n k=l Znk nk

+ In=l P[2 1 n El II >
n k=l Znk ]

from (2.6), (2.8), (2.11) and the fact that lEYnkll l-EZnkll -< El [Znkll for

all n and k. ///

The form of Theorem 2 is very appropriate for applicat+/-ons in kernel density

estimation where XI, ...,Xn is a random sample from a distribution with unknown

probability density function f. The kernel estimate for f is given by

t-X.
f (t) i .n K( i

n ’i=l
n n

(2.12)

where K is an arbitrary kernel function which is usually assumed to be bounded,

nonnegative and integrable to i and where h is a sequence of positive numbers tending
n

to zero which adjusts the height and spread of the kernel function. The random

elements {Xnk} in an appropriate Banach subspace of function space can be defined as

Xnk K(-----) -- E K(
h

)" Conditions (i) and (ii) of Theorem 2 are trivially
n n n n

satisfied. For complete convergence in the Ll-norm, (iii) is easily satisfied since

t-X
I

t-X
IE(F_o I--- (K(

h
E K(-h ))Idt)mq

n n n



74 R.L. TAYLOR

t-Xl 1 2q-< E(f_ K(s-XI/h )ds + f E K(
h - dt)

n
n n

E(I + i)
2q

2
2q

In the sup-norm, E IIXnlIl2q _< [_2 bound (K)]2q
n

.oo nhn2and thus )-q <
n=l

q > 1 is sufficient for (iii). Finally, when h 0,
n

t-XIi
EK (-----) f (x)

h
n n

for some

is achieved with traditional techniques, and (complete convergence) consistency of the

kernel density estimate in the Ll-norm or the sup-norm is obtained from Theorem 2.

The verification of (iv) depends on the particular Banach space In partic-

th
ular, (iv) is implied by tightness and uniformly bounded r moments (r > i). It is

th
easy to see that tightness and uniformly bounded r moments (r > i) are not necessary

for Condition (iv) of Theorem 2 even when E R.

The complete convergence for weighted sums of arrays of random elements will

be obtained in Theorem 3. Only the parts of the proof which differ from the proof of

Theorem 2 will be presented. First, let X denote the essential supremum of a non-

negative random variable X.

THEOREM 3. Let {Xnk} be an array of random elements in a separable Banach

space E satisfying

(i) [Xnk k >- i} are independent for each n,

(ii) EXnk 0 for all n and k,

(iii) sup { {Xnk{{ F < oo, and
n,k

(iv) given > 0 there exists a compact set K such that

Then

lim sup
"k=l ankIE(I Xnkl II[Xnk K ]) < g.

n

Ilk=Iank Xnkll 0 completely.

OUTLINE OF PROOF. Steps (2.6), (2.7), and (2.8) in the proof of Theorem 2
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remain the same. The random elements {l[Znkll El [Znk[I} have zero means and are

bounded by r with probability one. Hence, {IIznkll E IIZnkl I} are sub-Gaussian

with parameters < r2
I/2

and

Ik=I ank(IlZnkll El IZnklI)] 0 (2.13)

completely by Theorem 2 of Chow [4]. Thus, the proof is completed by following the

same steps of the proof of Theorem 2. ///

Since sup I IXnkll < oo, tightness is sufficient for Condition (iii) of
k,n

Theorem 2. However, since lim sup .k=iIankl 0 is also sufficient, tightness is not

n

necessary. Also, the more restrictive condition (iii) in Theorem 3 (than condition

(iii) of Theorem 2) allows the use of more general weights {ank}.

3. COMPLETE CONVERGENQE USING BASIS TECHNIQUES.

In this section the complete convergence of weighted sums will be established

for random elements in a Banach space which has a Schauder basis. Since the con-

sistency of the kernel density estimates depend on a particular space which may have

a basis, more general results can be obtained. The hypotheses will be shown to be

more applicable when the Baach space has a Schauder basis. In particular, only

coordinate-wise independence for some Schauder basis will be needed, and the weights

{ank} need only satisfy

exp[-/A < (3.1)
-n=l n

for each > 0 where A
2

n k=l ank"

Let {b.} denote a Schauder basis for E and let {f.} denote the corresponding
i

coordinate functionals. For notation convenience let U
t
(x) .ti=l fi(x)bi and

Qt(x) i;t+l fi(x)bi for each t 1,2,3,... It can be assumed without loss of

generality that the basis is monotone (by renorming the space if necessary).

THEOREM 4. Let {Xnk} be random elements in a Banach space which has a Schauder

basis. If
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(i) for each i, fi(Xnk): k > l} are independent, sub-Gaussian random

variables for each n-with uniformly bounded parameters T(fi(Xnk))
(ii) EXnk 0 for each n and k, and

(iii) lira .up B Qt(.k=l ank Xnk) ll 0,
t-o n

then

k=l ank XnII 0 completely.

PROOF. Given g > 0 pick t so that

sup IZk=I ank Qt(Xnk) II <
2 (3.2)

with probability one. Thus, for each n

,k=l ank Xnkll > e]

-< P[llut(Zk:l ank Xnk) II >

<.t O%nk l >
i=l k=l ank fi 2t

(3.3)

nce, from (i), (ii), (3.1) ,and (3.3)

///

Theorem 4 allows for more general weights since Zk:l lankl bn need not be

bounded. Note that in this case Zk=l ank Xnk is assumed to be a.s. convergent. Con-

dition (i) is easily satisfied in general. For example, if P[Xnk E K] i for each n

and k where K is a compact set, then {fi(Xnk)} are sub-Gaussian with parameter

(fi(Xnk <- 21/211fill (supl Ixl I). Also, by eemma 1.3.3 of Taylor [3]
xK

lim sup I IQ(Xnk) II 0 when P[Xnk E K] i. Thus, Condition (iii) also holds in this
t n,k

case when Zk=l lankl < i. Finally, as an aside, the conclusion of Theorem 4 hold.

almost surely (rather than completely) if the uniform almost sure convergence of

Condition (iii) is replaced by simply almost sure convergence.

Coordinate-wise sub-Gaussian random elements are also appealing for applications

since coordinate-wise independence suffices in this setting. In general, condition
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(iii) is the troublesome requirement which must be satisfied. The following lemma

(a modification of Lemma 8.1 from Zaanen [6])allows (iii) to be replaced by a more

restrictive condition but one which may be easier to verify in applications.

LEMMA. Let {Y t,n i, 2 be real-valued random variables satisfying
tn

(i) Ytn -> 0 with probability one for all t and n,

(ii) for fixed n,Y(t+l)n -< Ytn with probability one for each

t I, 2, and

(iii) Y Y with probability one for each t and n where Y is a random
tn

variable such that EY < m.

Then, lira sup EY 0 implies that lira E[sup Y 0.
tn tn

t n t n

THEOREM 5. Let {Xnk} be random elements in a Banach space which has a mono-

tone basis. If

(i) & (ii) (same as Condition (i) and (ii) of Theorem 4),

(iii) lira sup E[llQt(k=l ank Xnk) ll] 0, and
t n

(iv) E[sup lk=l ank Xnkll] < o.
n

Then,

lk=l ank Xnkll 0 a.s.

PROOF. Condition (iv) implies that k=l. ank Xnk is defined with probability

one. With probability one, sup Ik=l ank Xnkll can be identified as Y in the pre-
n

ceding lemma. Since E has a monotone basis, Ytn I]Qt(.k=l ank Xnk) II satisfies

(ii) of the lemma. Next let Y be identified as sup If0t(k=l ank Xnk) II with prob-
t

n

ability one. Thus, (iii) implies that lira E[sup If0t(k=l ank Xnk) II]
t-o n

lira EY
t

0. Hence lira Yt 0 in probability, and lira Yt 0 with probability one

t-o t-o m
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for some subsequence {tm}" Since 0 -< Yt sup I0t(Ok=l an1. Xnk)[I is non-
n

ncreasing with probability one, it follows that lim Yt
t-

lira sup I[Qt(.k=Iank Xnk) 0 with probability one. Theorem 5 now follows from
t-- n

a modification of Theorem 4. III

The comparisons of general Banach space results with the results of this

section will be completed by showing that condition (iv) of Theorem 3 implies

condition (ii) of Theorem 5. Assume that .k=iIankl <- I for each n and that for

compact, convex, symmetric set K can be chosen so that 0 e K and

sup k=l lankl EFllXnklll[Xnk K]
< !2. (3.4)

n

By Lemma 1.3.3 of Taylor [3], choose t O
so that for all t e tO

sup llQt(x)ll < . Then for t >- t o
xGK

IQt(/.k=l ank Xnk I
[Xnk K] )If < - (3 5)

2

since k=l lankl -< i for each n. Then for t -> t
O

sup E[IIQt (OO,k=l ank Xnk)
n

sup E[ IQt(.k=l ank Xnk I[X e K])I I]
n nk

+ sup ’k=l ankl E[I Q
t (Xnk) II l[Xnk K]

n

<+=
from (3.4) and (3.5) since liQt(x) II <- If x If for all t. Thus, the compact uniform

integrability of (3.4) (and hence tightness with uniformly bounded pth (p > 1)

moments) is sufficient for Condition (iii) of Theorem 5. Identical distributions

and moments conditions will suffice for Condition (iii). However, while it is often

true (in applications) that {Xnk: k >_ i} are independent and identically distributed

for each n, identical distributions seldom hold for the array {Xnk}.
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