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ABSTRACT. For the equation

where

LnV(t) + a(t)h(y(o(t))) f(t)

LnY(t) Pn(t) (Pn_l (t) (..-(Pl(t) (P0(t)y(t)) ’) .) ’)

sufficient conditions have been found for all of its solutions to be oscillatory. The

conditions found also lead to growth estimates for tle nonoscillatory solutions.
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i. INTRODUCTION

Our main purpose in this paper is to study the oscillatory phenomenon associated

with the eouatlon

LnY(t) + a(t)h(y(g(t))) f(t)

Where n > 2 and L is a disconugate differential operator defined by
n

LnY(t) =Pn (t)(Pn_l(t)(...(Pl(t)(P0(t)(y)t))’)’...)’)’.
Following our work (Singh and Kusano [6]), it is assumed that:

(1.1)

(l.2)

(i) Pl e c ([a, (R)), (o, (R))), o i i in
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(ii) a, f, g e C (Is, ), R), there exists a t o a such that

o < ? (t) <_ t for t >_ t O, and (t)

(iti) b C (R,R) h is nondecreasln? and sign h(y) sign y.

We Introduce the notation"

LoY(t) poY(t), Liy(t Pi(t)(Li_l(Y(t))’, 1 <__ <_ n. (1.3)

The domain D(Ln) of Ln is defined to be the set of all functions v ITv ) P

such that L v(t), o < n, exist and are continuous en IT ). In what follows by
i" y

a "solution" of euation (1.1) we mean a function v a D(L which is nontrlvial in any

neigh|;orhood of and satisfies (i.i) for all sufficlentlv iarF,e t. A slutier,

is called oscillatory if it has ari.itrarily large zeros; otl,erwise the uolution is

called nonoscillatorv.

A great many oscillation criteria are known for an eouatlon of the form

(r(t)y’(t))(n-l) + a(t)h(y(g(t))) o (1.4)

For this we refer the reader to Onose [2’, Sinp.h [3] and Kusano and Onose [1]. A re-

eentlv oub!ishc0 Russia9 L;,o l:v Sieveiov [7] gives a detailed llst of references on

the subiect. ObtaininF an oscillation criterion for the forced eouation

(r(t)y’(t)) (n-l) + a(t)h(y(g(t))) f(t) (1.5)

is not so simple. To the best of this author’s knowledF.e, the first attempt to obtain

conditions for the oscillation of the eouatlon

(r(t)y’(t))’ + a(t)h(y(g(t))) f(t)

was made by Kusano and Onose [I], and later by other authors including this one [4].

The main technioue employed rendered the forced equation into an almost homopeneous

equation, i.e. a function (t) was sought sucl that (i)(t) o as for i o,

(n-l)
i n; and (r(t),’(t)) f(t).

In this worF, we shall present a new but elementary tecnniue to obtain an

oscillatlon criterion for the eouation (i.I).

In order to shorten long expressions we introduce tIe followln notations:

For any function Q(t) e C [a,) and t, s e [a,), define

-1 (r)Q(r) (1.7)I0(q(r) ,r) Pn
and

Ik(O(t),t,s; Pn’Pn-I’
-1

pn_l.) pn_k(r) Ik_l(Q,t,r’Pn, ,Pn_k+l)dr (1.6)
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for < k < n-l.

Any solution y(t) of equation (1.1) which is continuous tn a finite interval can

be indefinitely extended to the right of a provided the coefficients are continuous.

In fact following our proof of Theorem 3.1 im [5] we can state the following theorem:

TItEOREN 1.1 The continuity of Pl’ P’ Pn and tiat of h, g, a and

guarantee that any solution of equation (1.1) continuous in a finite interval

can be continuously extended to all of [a,(R)).

PROOF. Same as that of Theorem 3.1 im [5] with minor cianges.

2. IN RESULTS.

THEOREM 2.1 Suppose there exists a function (t) such that

,(t) C (n) JR], (t) > o and (’Pl(t))’ o for t a.

Further suppose that q() satisfies

((R)I/.2(t)dt <

(2.1)

(2.2)

,rt fsLira sup I/2(s) (X)ln-3(f(x),x,a’pn,Pn- P3)P l(x)dxds (2.3)

Llm inf I I/’2(s) q, (x) I (f(x) ,x a ;pn,Pn_l ..,p3)pn-3

(x)dxds

Pn11 (Xn_ (2.5)

dx dx dXn_ dx <
n-1 n-2 3"

a(t) >__ o and Pl(t) i o for t

_
a. (2.6)

Then all solutions of equation (i.i) are oscillatory.

PROOF. Suppose to the contrary that y(t) is a nonoscillatory solution of eua-

tion (1.1). I.et T > a be large enough so that y(t) and y(g(t)) are of the same sign

for t > T. Without any loss of generality, let y(t) > o ant v(e(t)) > o for t >. T.

On reoeated integration for t T, we obtain from euatlon (I.I)
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-l(t) (T) (pl(t) pl(x)dx)L3Y(T)(Pl(t)(F0(t)v(t))) I,
2 L2Y

T

(pl(t) pl(s) pl(x)dxds) (T)L&y
T T

Xn-2 -1

T T T

+Pl(t) In-3 (a(t)h(y(g(t)))’t’T;Pn P3
-I(t) In_3(f(t) ,t,T;Pn,Pn_ 1

ulttpiytng (i5) by (x) and rearranging ters we hve

(Pl(t),(t)(P0(t)y(t))’)’ ,’(t)Pl(t)(P0(t)y(t))’ ,(t)pi(t)L2Y(T
_,(t)((pl(t tp;l(x)dx)L3y(T)_ _,(t)Ln_lY(T)p;l(t ft.l (x

3
T T

f
xn-2 -l_l(Xn_l)dXn_l...dx3 + (t)pl(t) In_3(ah,t,T;Pn P3

,(t)pl(t) In_3(f(t),t,T;Pn,Pn-i ,p3

Integrating (2.8) and dividing by ’2(t) we get

Pl (t) (PoY) Pl (T), (T) (pOy) (T) 1

,(t) 2(t) ’2(t)
,,, (X)Pl(X) (pOy) dx

T

I I$2(t T;t(x)pl(x)d L2y(T)- I_ 3T T (s)dsd L3Y(T)

1 I!t (x)p-12
2(t)

(x) P31 lXn-2p:t (x3)dx3"’" i
(Xn-l) dXn- I" "dx3d Ln- 1

i (t(x)p-l(x) In_ (a(x)h(v($,(x))),x,T’pn p%)dx
2 3 .......

1

2(t

t

I(x)pl(x) In_3 (f(x),x,T;Pn,Pn_1 pdx.
T

(2.7)

(2.8)

(T)

(2.9)

In (2.9), we integrate the third term by parts to obtain

!1(t) (PoY)
,2(t 2 ,g(t)

t

f (,, (X)Pl(X)) ’PoY(x)dx
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(xD_])dXn_l

1 ;t(x)pl (x) I+
$2(t)

T

n-3(a(x)h(Y((x))) ,x,T-Pn P3)dx

where

1 ft(x)p_l(x) I (f(x),x,T’p p
$2(t 2 n-3 n 3

)dx

K0 Pl(T)’t’(T)(PoY)’(T) + Pl (T)PO(T)y(T)’CT)

Integrating first term in (’.1(,} at.air b,’ partn ,,. o_.,rvi,e th,ot

[t 1 (x)’o(x)y(x)" (x)

,b2 (x)
dx

/
/ It Pl (x)P0(x)y(x)(x) x

get

dx3dx]

(2.10)

(2.11)

Pl(t)P0(t)y(t) t Pl’(X)po(X)y(x) + ft 1

’b(t:) KI fT "(x) T
X

(’-"’pl) ’Po(S)y(s) .dsdx
T

-1
p
n-i

(xn. 1)dXn_l...dx3dxds

1 Is,(x) p;1(x) In_3(a(x)h(v((x))),x,T,n p3)dxds
’2 (s) T

sc’ (x) pl (x) In-3 f (x) ,x ,T ;Pn ’Pn-1 P3)dxds (2.12)

where

K1
Pl(T)Po(T)y(t)

(T)
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The terms on tho left hand side of (2.12) are either oositlve or finite. Since the

riFht hand side oscillates between and =, a contradiction is apparent. The

theorem is proved.

EXAqLE I. Consider the euatlo1

(t]-v’)’) + y(t-3/2) t 8 sin t, t >
t -2

Here P0(t) -= ]. Pl(t) l/t, P2(t) t and P3(t) -= I.

ChoosnH ,l’(t) t 3 for t ?_ =, it is easily verified tlat all conditions of the

(2.13)

teorcm are satisfied. Hence all solutions of euation (i.I) are oscillatory.

THEONEY 2.2 Suppose conditions (2.2) (2.6) of theorem 2.1 hold, let .(t) be

a nonneFative solution of the euation

(Pl(t)y’(t))’ a(t)h(v((t))) o.

Then all solutions of euation (i.I are oscillatory.

(2.14)

PROOF. Since (Pl(t),(t))’ >_ o, all conditions of theorem 2.1 are satisfied.

The proof is complete.

COROLLARY 2.1 For the equatio

y(n)(t) + a(t)h(y((t))) f(t) (2.15)

Conditions (2.3) (2.5) respectively reduce to
t s ix n-3

llm lnf f i/’,2(s) f ,’(x)., (x-u) f(u)dudxds--

llm sup I i/’2(s) $(s) (x-u) n-3

t-

(2.16)

and

t 2

i
s xn-4]ira 1/ (s) *(x)

f(u)dudxds (2.17)

dxds < (R). (2.18)

Thus subject to conditions (2.2), (2.6) and (2.15) (2.18) all solutions of eouation

(2.15) are oscillatory.

EXPPLE 2. Consider the eouatlon

2 2ty(iV)(t) + e y(t-) -63 e sin(t), t > (2.19)
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tIf we choose ,(t) e then conditions of corollary 2.1 can be easily verified.

Hence all solutions of euatlon (2.1q) are oscillatory. In fact y(t) e 2t sin (2t)

is one such solution.

For the bounded solutions of equation (I.i), the condition a(t) > o can be improved

as the following th,eorem shows:

THEOREm’! 2.3 Suppose there exists a function ,(t) such that

%(t) e C
(n) [R], (t) > o, (’$’pl)’ >_ o and pl’(t) _<_ o for t >_ a. Further suppose

that ,$,(t) satisfies conditions (2.2) (2.5) of Theorem 2.1 and the condition

i/.2(t) ft,(s) In_3(la(s)l ,s,a;Pn,Pn_1 p3)pl(s)dsdt <

Then all bounded solutions of equation (I.1) are oscillatory.

(2.20)

PROOF. We proceed as in Theorem (2.1) and arrive at (2.12). If y(t) is bounded

then there exists a constant Cy > o such that

lh(yfgt)))l. < C

In euation (2.12) the last term on the left hand side

If tl/*(s) *(x)Pl(x) In_3(a(x)h(y(g(x))),x,T;Pn P3)dxdsl
T T

(2.21)

T T
(2.22)

Hence all terms on the left hand side of euation (2.12) are either finite or non-

negative. The proof now follows as in theorem 2.1.

REMARK. When n2,3, condition (2.18) reduces to condition (2.2) with obvious

chanes in (2.16) and (2.17).

Under the conditions of theorem 2.3, eoution (I.i) may Dossess unbounded

nonoscillatory solutions as the following example shows:

EX#d4PLE 3. The equation

y"(t) + 50 sn t y(t) (4 + 50 sin t) e

2t
has v(t) e as a nonoscillatory solution.

t
If we choose (t) e we have from (2.20)

)f e_2t t es sin s dsdt <

2t (2.23)

(2.24)
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Conditions (2.16) and (2.17) yield

s 3s
lira inf e-2t e (4 + 50 sin s)dsdt

and

(t -2t I
s 3slira su: e e (4 + 50 sin s)dsdt

Thus all conditions of theorem 2.3 are satisfied, llence all bounded solutions of

eouatlon (2.23) are oscillatory ever. though it has an unbounded nonosci]latorv

solution.

COROLLARY 2.2. Subect to the conditions of theorem 2.3 all nonoscillatory

solutions of equation (1.1) are unbounded.

Corollary. 2.2 leads to tle followin theorem which gives a growth condition for

the nonoscllatorv solutions of equation (i.i).

qIEOREN 2.4 SupDose conditions of theorem 2.3 hold. Let v(t) be a nonoscilla-

tory solution of eouation (1.1), Then

1
lira sup (!y(t)[p- (t))
t_ n

(2.25)

PROOF. Suppose to the contrary that there exist constant Dv o and T > a

such that

[y(g(t))Ip-l(t) < Dv (2.2b)
n

for t > T. Condition on h mvlics that the.re exists a C > o such that
y

[b(y(g(t)))[ <_ C
v ly(g(t))I <_ CvDy--- Ky (2.27)

Following the proof of theorem 2.3 we see that the constant Kv replaces Cy in euality

(2.22) and the proof is complete.

REMAPK. It is a matter of general interest to obtain theorems involving merator

L in its most general form" i.e. when L is not necessarily in canonical form. Ln is
n

said to Le in canonical form if

((R)-l(t)dt , i < I < n-l. (2.2b)
Pi
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Recently Trench [8] has shown that when Ln is not in canonical form, i.e. when

(2.28) doesn’t hold, it can be put in a canonical form in a unique way x,:ith a

different set of p s satlsfvlng (2.28). More precisely t’e operator L can be

rewritten as

where

LnY bn(bn_l(t)(...(bl(t)(b0(t)y(t))’)’...)’)’

bSl(t)dt- 1 < i < n-I (2.29)

eauh bi is obtained from PI’ P2’ --’ Pn
leading to b s are tedious.

The actual computations

It is interesting and important to note that the results in this work do not

depend upon condition (2.28) or (2.29).
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