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ABSTRACT. Let R be a ring and let N denote the set of nilpotent elements of R. Let

Z denote the center of R. Suppose that (i) N is commutative, (ii) for every x in R

2
there exists x’ <x> such that x- x x N, where <x> denotes the subring generated

by x, (iii) for every x,y in R, there exists an integer n n(x,y) 1 such that both

(xy)n (yx)n n+l n+l
and (xy) (yx) belong to Z. Then R is commutative and, in fact,

R is isomorphic to a subdirect sum of nil commutative rings and local commutative

rings. It is further shown that both conditions in hypothesis (iii) are essential.

The proof uses the structure theory of rings along with some earlier results of the

authors.
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1. INTRODUCT ION.

Recently [i], the authors proved that if R is a semisimpIe ring with the property

that, for all x,y in R there exists an integer n n(x,y) such that (xy)
n

(yx)
n

is in the center of R, then R is commutative. This naturally gives rise to the fol-

lowing question: what additional conditions are needed to force the commutativity of
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R when R is an arbitrary ring? In this paper, we establish a theorem which gives some

condit ions.

2. MAIN RESULTS.

In preparation for the proof of the main theorem, we first state the following

result which was proved in [2] (also see [3], [4], [5]):

LEMMA i. Let R be a rin ..and let N be the set of nilpotent elements of R. Sup-

pose that (i) N is commutative, (ii) for every x i__n R there exists an element x’ i__n
2

the subrin <x> generated by x such that x x x N, (iii) for all a e N and b e R,

ba ab commutes with b. Then R is commutative.

With the aid of the above lemma, we are able to prove the following.

MAIN THEOREMS. Let R be a ring, N the set of nilpotent elements of R, and Z the

center of R. Suppose that (i) N is commutative, (ii) for every x i__n_n R there exists

an element x’ in the subrin <x> generated by x such that x x2x e N, (iii) for

n n
every x,y i__9_n R, there exists an integer n n(x,y) >_ 1 such that both (xy) (yx)

and (xy)
n+l

(yx)
n+l

belong to Z Then R is a subdirect sum of local commutative

rings and nil commutative rings.

PROOF. The proof will be broken into several claims.

CLAIM i. The idempotents of R are all in the center Z of R.

2
For, suppose e e R, x R. By hypothesis (iii), there exists a positive

integer n such that

{e(ex exe + e)}n {(ex exe + e)e}n

This reduces to

(ex- exe + e) e e’Z

and hence ex- exe commutes with e. Therefore, ex exe e(ex- exe)

(ex exe)e 0; that is, ex exe. Replacing ex exe + e by xe exe + e in the

above argument, we obtain xe exe, and Claim I is proved.

CLAIM 2. The set N is a commutative ideal in R and hence N
2
C Z.

This was essentially proved in [4]. However, for convenience, we re-produce the

k
proof. Let a e N, b R and let a O.

By hypothesis (ii),
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(ab)
m

(ab)
m+l

c

for some element c e <ab> and some positive integer m.

Let

(ab)mcm.
Then, as is readily verified,

(ab)m (ab)m 2
e, e e g Z (by Claim i). (2.1)

Therefore, since e e Z,

2 mcm m-I m
e e e(ab) aeb(ab) c ake{b(ab)m-lcm}k 0,

k 0. Therefore, ab e N.since a 0. Thus, e 0 and hence by (2.1), (ab)
m

Similarly, ba g N. Thus ab and ba are in N for all a e N, b e R. Combining this

with hypothesis (i), we conclude that N is a commutative ideal of R, and hence N2_ Z.

CLAIM 3. If f: R R* is an onto homomorphism then f(N) coincides with the set

of all nilpotent elements of R*.

Again, this was proved in [4], but for convenience we re-produce the proof.

kLet d* be an arbitrary nilpotent element of R* with (d*) 0. Choose d in R such

that f(d) d*. By hypothesis (ii),

d- d2d’- e N for some d’ g <d>. (2.2)

Observe that

d- dk+l(d’)k (d- d2d ’) + dd’(d- d2d ’) + + (dd’)k-l(d d2d’). (2.3)

Since, by Claim 2, N is an ideal in R, the right sde of (2.3) is in N (see (2.2)) and

hence

d d
k+l

(d
k

g N.

Recalling that f(d) d*, (d*)
k

O, (2.4) now implies that

d* f(d) f(d- dk+l(d’) k) f(N),

(2.4)

and thus d* f(N), which proves Claim 3.

CLAIM 4. Any homomorphic image of R satisfies all the hypotheses (i), (ll),

(iii).

This follows at once in view of Claim 3.

To complete the proof of the Main Theorem, first recall that

R m a subdirect su of rings Ri(i F);

each R
i

is subdirectly irreducible.
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Furthermore, by Claim 4,

each R. satisfies hypotheses (i), (ii), (iii).
1

(2.6)

We now distinguish two cases.

Case i: R. does not have an identity. Let x g Ro. By hypothesis (ii), there
1 1

exists an element y g <x> and a positive integer m such that

m m+l +
x x y, (y g <x>, m g z ).

Let

m m
e x y (y g <x>). (2.7)

Then, as in the proof of Claim 2 see (2.1)),

m m 2
x x e, e e e Z. center of R.; see (2.6) and Claim i).

l 1
(2.8)

Since e is a central idempotent in the subdirectly irreducible ring R
i

and since R.

m
has no identity, e 0 and, hence by (2.8), x

m
0. We have thus shown that x 0

for all x in Ri; that is, R.I is nil.

Hence, Ro is a nil commutative ring (see (2.6) and hypothesis (i)).
1

as 5: R. has an identity i.

Let x e R.. Arguing as in Case 1 the central idempotent element e in (2.7) and
1

(2.8) satisfies

e 0 or e i (2.9)

m
If e 0, then x 0 (see (2.8)). On the other hand, if e i, then by (2.7),

-i m-i m
x =x y e Ri.

We have thus shown that

R. is a local ring (in Case 2) (2 10)
1

Now, let u be a unit in R. and let y e R.. By (2.6) and hypothesis (iii), there
1 1

exists an integer n n(u,y) > 1 such that

-1)n n((uy)u (u-l(uy)) e Z. center of R.]
I 1

and hence

n -i nuy u y commutes with u.

Therefore,

(uynu-i yn)u u(uynu-i Yn), and thus
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n n 1
uy y u uuynu yn..

Multiplying by u on the right side of the above equation, we get

(uyn- ynu)u u(uyn-ynu) (u unit in R.1, y E Ri. (2. ii)

Setting y 1 + a, where a is an arbitrary but fixed t_ element of Ri, in

k
(2.11) and recalling that a Z. for all k > 2 (see Claim 4 and Claim 2), we see

1

that

(u(na)- (na)u)u u(u(na) (na)u), and thus

n(ua- au) commutes with u. (2.12)

But, by (2.6) and hypothesis (iii), the above argument can be repeated with n + 1

replacing n, to get (see (2.12))

(n + i)(ua- au) commutes with u. (2.13)

By (2.12) and (2.13), we conclude that

ua au commutes with u, (u a unit in R., a e Ni)._ (2.14)

Moreover, since N. is commutative (2.14) holds trivially if u is any nilpotent element

of R., and hence by (2.10) and (2.14),
i

ba ab commutes with b for all b Ri, a g Ni. (2.15)

Therefore, by Lemma i, R. is commutative, and thus by (2.10) R
i

is a local commuta-
1

tive ring. This completes the proof of the Main Theorem.

We conclude with the following.

REMARK i. Our Main Theorem need not be true if we delete one of the two con-

ditions in hypothesis (iii), as a consideration of the following ring shows:

R

a b c

0 a
2

0

0 0 a

a, b, c e GF(4)

4In this ring, we readily verify that (i) N
2 {0}, (ii) x x e N for all x e R,

(iii) (xy)
6

(yx)
6

for all x,y in R (but (xy)7 (yx)7 is not in the center of R)

Note that R is not commutative.
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We further remark that we can delete one of the conditions in hypothesis (iii) by

fixing n and assuming, in addition, that R is n-torsion free. Indeed, the above proof

also shows the following.

n
THEOREM. Le__t R be a rin and let n be a fixed positive integer SUch that (xy)

(yx)
n e Z and R i__s n-torsion free. Suppose, fur.ther that the .set N of nilpotents

o_f R is commutative and for every x i__n_n R there exists x’ i__n_n <x> such that
2

X X X

e N. Then R is a subdirect sum of local commutative rings and nil commutative .rings.

REMARK 2. Our Main Theorem remains valid if we replace the exponent (n + i) in

hypothesis (iii) by m, where m is any positive integer relatively prime to n. Indeed,

the only change in the above proof takes place in (2.13), where (n + l) now gets re-

placed by m, but this does not affect the conclusion in (2.14) or the rest of the

proof.
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