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ABSTRACT. A number of identities involving iterated integral transforms are establi-

shed, making use of the fact that a function which is a linear combination of the

Macdonald’s function K (z), where z is a complex variable, is a Fourier kernel.
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i. INTRODUCTION.

The object of this note is to establish various identities involving integral

operators. The integral operators are the integral transforms with respect to the

function K (z), where 7/ (z) is the Macdonald’s function of order and argument z, a

complex variable. Some functional relations are deduced, as special cases, which

show the inter-relations among more familiar Fourier Sine, Fourier Cosine, and Laplace

transforms.

2. THE KERNEL.

Let 1/27/ (0), with a constant and vl < I.

)2 I/4 2yThen m-----

or

Whence

2 1/4]x.2 y 82y,

)2 12_/41 k ky)2 k= 0 1 2

im/k
Now, if we set @ ie 0 -< m 2k-l,
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then "m/kx),y x 2K(ie
satisfies a k-fold Bessel equation:

D
92 1/4] k k
x--’--- y (-I) y (2.1)

It is not difficult to see that if x is a complex variable, then every point of (2.1)

is regular except for a singularity at x 0. Now consider a function of the form

2k-1

m M
m=O

The functions are an extension of the functions which were first noted by Guinand.

As a special case when k 2, chose the coefficients as

i 2 iB 0 B2 B 0 and B - cos v

Then we obtain

G2(x
1 1/2...

---x t (ix) + K (-ix) + 2cos( vr)Kv(x)}

K (x), say, (2.2)

and we have

THEOREM 2.1. y kv(x) is a solution of

.Z114 0 < X <oo

the two-fold Bessel equation.

The function k (x) is of special interest to us here nd we shall develop its

properties further.

Using the representations [3]

Kv(x) g cosec v{I_v(x) Iv(x)
and

Y (x) cosec v{cos w J (x) -J (x)},

where J I and Y are the usual Bessel functions, equation (2 2), can be written as

i i 2
kv(x) x1/2{sin -vJv(x) + cos-v(Yv(x) +-- Kw(x)) }.

These functions arise as kernels in divisor summation formulae of the Hardy-Landau
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type, involving number theoretic function ok(n), the number of kth powers of the

1
divisor of n, [4] If we put v have

-2 ,we

k+1/2(x) -(cos x -sin x + e

which obviously satisfies the differential equation

Dy y.

I.

Next, the Mellin transform of xK (x) is given by

h h 2s_3/2m{x2K (ax) a-s-2 I I i i i I
F(++) (- +)

i
where Re s > IRe w -- [5] whence the Mellin transform of k (x) defined in (2 2)

is given by

28-3/2 I I i) ri I
r( s +-f + 4 (-f s --f +1/4)

i-s-1/2 + (_i) -s -1/2 I
+ 2cos - v).

On simplifying, we have

2s+k*(s) i i I i ir( +-f +- r(y s --f +)

i I I (s_ +cos (s + + y) cos 1/2)
for

IRe s > IRe I --By repeated use of the relation

r(z)r(1-z)
sin zz

it is not a difficult matter to see that

k*(s)k(l-s) I.

Hence,

THEOREM 22. The function k*(x) defined by equation (2.2) is a Fourier kernel, [6]

If we define the transformation T[f] by
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c[f] I] k(xt)f(t)dt,

then C2[f] f and T is involutory since F2 7, the identity transformation. Mak-

ing use of the asymptotic expansions of the Macdonald’s function K (z), we have

and

k (x) O(e-x), x

(x) O(x-’+1/2), x O.

Therefore k (x) L2(0,), for lxl I.

L2Now, if we take (x) (0,), the integral defining the transformation T exists

and is in fact absolute convergent. Thus T is a bounded transformation on L2-space

for Ivl < i.

3. THE OPERATOR.

We shall now define the transformation T in operator notation. Denote the ope-

rators K and K respectively by

K[f] =K{f(x); x}= [ xaK(xt)f(t)dt

and K .[f] Kv{f(x); ix} f r K (ixt)f(t)dt

where f L2 (0,) and I,I < , with K (z) being the Macdonald’ s function. Then the

transformation can be expressed, in operator form, as

and we can write, symbolically,

1 1T- --(K.,i + K,_z. + 2cos vK
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Since F2 f, the identity transformation, we have

1- (K + K + 2cos
i vK)2 I

or

4cos2 1
v,. v,-. " K2 + K .K + K .K

+ 2cos-v(g .K + K .K + K K + K K

The right-hand side is the linear combination of iterated transformations, which are

(3.1)

bounded on L2-space for vj I.

Now, using the standard result [5],

I tKv(at)Kv(Bt)dt

where Ivl < 1 and Re(u+B) > 0, we have for example, if 2(0,),

K K If] K (ixt)dt (ut) v(ut)f(u).v,i v
0

v

1 (xu)1/2f(u)du tKv(ixt)Kv(ut)dt=-
-(i)

-v
-vf(

2v

() u)
(ix)2V u

sn 2 +2 du

_g g If]
D --i

The change of order of integration can be justified by absolute convergence. Thus,

we obtain our first identity

K .K +KK =0 (3.2)

The identity given by (3.2) can alternatively be established by making use of the

Mellin transform theory. That is, the Mellin transform of the iterated operator

Kv,iKv[f], is given formally by

m{K [/] m{- 1 1/2
x K (ix); s }m{ i h

v iKv v
x-K (x); l-s}f*(s)

.-s-1/2
z f*(s)

1 1 1 1
4sin -r( v + )sn ( + u + )

where f*(s) denotes the Mellin transform of f(x). Also,

[f;} m{- 1 1/2
x K (x); s}m{- 1 x1/2K (-ix); l-s}f*(s)

(-i)
1 1 1

4sin 1/2(s v + )sin u(8 + + )
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Then m{ (K .K + K K .) If] O,

implying that

K .K +KK =o

as shown above. Similarly, one can show that

KK .+K .K =o,

a sort of conjugate of the identity in (3.2). Consider the representation

(3.3)

(e-i1/2vJ (x) e
i1/2w

(x));K(ix) 2 sinwn -v

then

K [f] (xt)1/2Kvixt),(t)dt J;J 1

I (xt)1/2j (xt)f(t)dt
2sin v -

-e (xt) 1/2J (xt) f( t)dt

2sin vr
e i1/2vH If] ei1/2H []}

where H denotes the Hankel transform operator of order v. Thus, in operator form,

K -iwH i1/2
e e H (3.4)

,i 2sin - 2sin

and similaz ly

K ei1/2WH e-i1/2H,- 2sin -w 2sin

Now, after substituting for K and K in (3.2) and rearranging, we have

-i1/2 i1/2v
e (H_Kw K)Hw) e (HK KH_v).

By comparing the real and imaginary parts and solving, we obtain the identities

KH =H K (3.5)

and H K KH
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Now,

H1/2 [f] 2j1/2 (xt) f(t) dt

I sin (xt) f(t) dt

S[f],

and similarly,

H_1/2[f] C[f],

where S and C are the usual Fourier since and cosine transform repsectively.

Also,

K1/2[f] I (xt)1/2K1/2(xt)f(t)dt

I11/2 Ie-Xtf(t)dt
c[yl,

where L[f] is the Laplace transform.

+.IHence, setting -, in (3.4), we obtain the relations,

f CL

and LC SL. (3.7)

Incidently, a general relation involving the operators K and H can be established:

iHK cosec {sin-(w-) KvH + sin -g=(1 T[K H (3.8)

On setting _+v, (3.8) yields the identities. (3.5) and (3.6). Next, from the

representation (3.4), we have symbolically

2

(3.9)

H2 H2 Hwsince f, the identity operator, with being the Hankel transform.

Similarly, one can show that

(3.10)
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And, in the same vein, we have

K .K + K .K 2 in- v-v -v vv,c v,-c v,-c v,c S 2 cos v(H H +H H (3.11)

Now, going back to equation (3.1) and using the results given by (3.2), (3.3), and

(3.9) in (3.11) and simplifying, we have finally, for Ivl i,

[ 2K2H H +H H sin v 2cos v F.
) --) --) )

(3.12)

1
An interesting relationship can be established by putting v i in (3.12). Then

4 K2H1/2H_1/2 + H_ttH1/2 1/2 0

or

SC + CS _2 L2 (3.13)

where ,C, and L denote the Fourier sine, Fourier consine and Laplace transforms

respect ively.

From (3.9) and (3.12), one can establish the identity

K2 _K _K2

,i w,-i

which, on setting v -+ i, yields (3.13).

(3.14)
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