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ABSTRACT. The authors introduce the notions of Ritt order and lower order to

functions defined by the series f (s) exp (-ns) where () is a D-sequence and
I n n

f (s) are entire functions of bounded index.
n
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1 INTRODUCTION.

Let us consider an M-dirichletian element:

{}: Z- f (s) exp (-nS), s 0 + i%, (o %) e
n=1 n

(i.i)

where (An) is a D-sequence (a strictly increasing unbounded sequence of positive

numbers) and f (s) are entire functions of bounded index (defined below). Conver-
n

gence properties of such elements were discussed by J.S.J. Mac Donnell in his
m

doctoral dissertation [1] under the conditions lim log)t n
0 and lim -n 0

n+oo n n/oo n

where m is the index of f In this paper, we first study the convergence prop-
n n

erties of these elements with less restrictions, namely,

log n < and (1.2)L lim sup
n+oo n

m
n

lim sup -- < (1.3)
n

As the functions defined by these series are unbounded in the half-plane, it is

not possible to define Ritt order directly. However, by making use of functions
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defined by associated intermediate series, we introduce the notions of Ritt order

and lower order to these functions.

2. MAIN RESULTS.

DEFINITION 2.1. [2j. An entire function f is said to be of bounded

index if there exists a non-negative integer N such that

max
If(k) (s) If(j) (s) (0)

J! (f (s) f(s))
k!

0_<k<N

for all j and for all s. The least such integer N is called the index of f.

We require the following lemma which shows that an entire function of bounded

index is of exponential type.

LEMLA 2.2. [3], [2]. Let f be an entire function of bounded index N. Then

f(k)(0)
exp (N + i) Is{max

k
O<k<N (N + i)

(2.1)

sjLet f (s) Y. a be an entire function of bounded index m
n

j=O
nj n

(J)If (0)A max {la I/j 0 1 m max j 0 1 (2.2)
n nj n j! mn

{X}: A exp(-% s) the associated dirichletian element whose abscissa of
n n

1
log A

convergence is denoted by k; k lim
n

c %
n n

REMARK 2.3. It can be easily seen from Lemma 2.2 that

If (J)

fn(S) < max
n

0<j -<m J
n

exp (m + i) Isln

A exp (m + i) Isln n

THEOREM 2.4. If 0 <- < i, the region of absolute convergence of (I.I) is the

exterior of the hyperbola centre (k(l- B2)-I O) and eccentricity B-I contained

in the half-plane o > k.

PROOF. Using Remark 2.3, we have

If (s) exp(- s) < A exp(m + i) Is exp(- )
n n n n n

(2.3)
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From the definitions of k and B it follows that for > 0

A < exp (k + )% and
n nn’ n > n’

m + i < ( + )
n" n >- n" n n

Hence

n(e) max(n’, n")
Ifn(S) exp(-%nS) -< exp(-%n(O k E (6 + E)]s])

and

f (s) exp(-% s) -< exp (-% (O k g (6 + E) Isl)
n() n n nn()

The series in the right hand side converges provided

o- k- Isl > 0 (2.4)

which is valid only if o > k and 0 _< < i.

Thus any point in the region of convergence of (i.i) must satiny

2
(_ k)2 2((72 + T > 0

which reduces to

(o-
k 2 62 2

k
2 2

i 2 I 2
>

(i 62)I
(2.5)

from which the theorem follows.

REMARK 2.5. If 0 the M-dirichletian element converges in the half-plane

o > k (which coincides with the half-plane of convergence of the associated series

{X}) thus giving the result of MacDonnell i] as a particular case.

Next we proceed to introduce the notions of Ritt order and lower order for

functions defined by (i.I). We need the following lemmas.

Let the M-dirichletian element given by (i.i) converge absolutely on E and
a

D {s E C (7 O, g JR} denote the imaginary axis.
o

LEMMA 2.6. Under the conditions o and 0 _< < , we have E , and
c a

is hoomorphic on .
PROOF. Using (2.3) we have

m + i
If (s) exp(-EnS) < A exp[- (i

n s_ )]
n N {0} s Do

n n n In (7 [(7[

where o i if o > 0 and @(7 =-i if o < 0.
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Since 0 < 8 < given E > 0

’ ’ fn (s)exp (-INS)n’(=n n > n’ s g - DO

< An exp[-O In(l ( + E) OO)]. (2.6)

For any point (on the imaginary axis) s iT of D we extend
O O O

by its

limiting value as s s

The function s [i- (8 + g) 80] is continuous on . Let

E {s g /o(I- (B + g) > p} indexed by p on . Then {n converges
to o

uniformly on each E as > 0X where
]a c

qbn’}: fn(S) exp(-InS).
n=n

Let G be any open subset of . We put

G inf{o(l- (8 + )
Ioi

00) Is G}.

The number G is fi-k-nd (@n’ converges absolutely in G if o oo; further
C

@G: G 9 s (s) is hol]mrphic on G. Since G is arbitrary on , {o} converges

absolutely on each point of and @G can be continued analytically on the totality

of . Let denote its analytic continuation. Now we put

M
qb

(O,B) sup{lqb(s’)I/o’ -> o s e B(I,)

where B(I,Z {s /]’[- Yl[ _< } is the horizontal strip with Y1 as axis

and of width 2. Then

LEMMA 2.7. Under the conditions oX and 0 -< B < 1 we have
C

M (O,B) is bounded on each point o e IR and lira M (o,B) 0

(I ’) IR x o

]+PROOF. Let (TI’ ) be fixed arbitraril on x
o

Then given E’ > O,

< 1 + ’ and with 0 < 8 < i. We have
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0o) > o(i ( + e)(l + ’))

as a result of(2o6)and (2.7)

and hence

e o (l ( + )(1 + ’));

finally,

(O,B) < An, exp (-og,(l (B + g)(l + ’))

Xn, (o,(1- ( + e) (l+ ’))

n
lim M (o,B) 0 as o ->

lim M (O,B) 0 as O ->

(2.7)

Further, we have

> -O
o(I ( + ) - 6o) > 0(i + ( + g) (i + [’));

we put M(oe,) Max {In,(s) I/o -< oE, ^ s g B(I I,E) As n’ is holomorphic on the

compact set, {s g B(I,)/IO < }, M(og,) is finite. Then we get

o g IR
M (O,B) _< Max {,(o(i + (B + E)(i + g’)), M(oe,), ,(oe,(i-(B+)(I+.’))};

, is a strictly decreasing function in IRand hence

,([i + + g)(l + g’)] > , ((i (B + g)(l + g’)) if < 0 and

,(O(i + (B + g)(l + ’)) < , (o(i ( + )(i + g’)) if O > O,

(equality holds for o O) with

As all M-dirichletian polynomials satisfy the two properties of the lemma, in

each horizontal strip B(%,) M@(o,B) is bounded for each o e ]Rand hence the function

o -> M$(O,B) is decreasing on IRwith lim M@(o,B) O.

DEFINITION 2.8. We put

+ M
pB lim sup log log_ (,B)

+ M*(O B)
Then 0B is called the Ritt order of b on B. Let )tBqb lim inf

log log_o }.

XB s called the lower order of on B.hen

TgEOREN 2.9. gnder the conditions X and 0 < l, we have
c

V + pB _< OXR and % -< %X
R

(i,) IRx 0
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where and % are respectively the Ritt order and lower order of X in the whole

plane.

PROOF. Proceeding as in Lemma 2.6 for 0 -< B < i, we have by (2.6)

"V" + ] " I@n,(s) < )in [(7(1 ( + E)
Isl

g 0 n’(=ng) s e B(I,)

Now denoting by n’ and , the holomorphic functions on defined by the elements

{n,} and {kn ,} we have for o negative with Ioi sufficiently large:

M (O,B) -< , [O(I (B + e) -- eO)

which gives

g’ E IR
0

and hence Bn _< RXn
As adding finite number of terms to a holomorphic function defined by a classical

n’-I
Dirichlet series does not affect its Ritt order [4], we add A exp (-%ns) to

n=0 n

{,} and then PRXn ORX.
Now

on’ @n’V M(,B) _< M (o,B) + M (O,B)
g IR

n-i
where {:,}: f (s) exp(-% s); then

n=1
n n

o
V + PB < max (PBn ’, PB@n(,) x

0

Bn since n’ 0.

Finally we have

and similarly we can show:

(r,) IRx
0

V + %B -< %R
(,) x 0

Now we are in a position to define the Ritt order and lower order of in the whole

plane {.



ON THE RITT ORDER OF CERTAIN CLASS OF FUNCTIONS 187

and

DEFINITION 2.10. We put

P sup {p /(1,9.) e IRx B0

XR sup {IB /(yl,) e IRx ]R +}
o

Then OR is called the Ritt order of on and IR is called the lower order of
on
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