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ABSTRACT. The purpose of this paper is to define the continuous Jacobi transform

as an extension of the discrete Jacobi transform. The basic properties including

the inversion theorem for the continuous Jacobi transform are studied. We also

derive an inversion formula for the transform which maps LI(R+) into L2(-I i)
W

where w(x)=(l-x) (l’l-x) 13,
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i. INTRODUCTION.

This paper is directed to specialists in the theory and applications of

integral transforms. However, familiarity with reference [1,2] would be useful for

non-specialists interested in the paper.

Debnath [3-4] first studied the theory of the discrete Jacobi transform with

applications to physical problems described by differential equations including the

problem of heat conduction in a finite domain with variable thermal conductivity.

The purpose of this paper is to define the continuous Jacobi transform, study

its basic properties and develop an inversion theorem. The continuous Jacobi
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transform generalizes, on the one hand, the continuous Legendre transform studied

by Butzer, Stens and Wehrens [5] and on the other, the discrete Jacobi transform

studied by Debnath [3]. The study of such transforms is interesting in its own

right as well as in their applications to boundary value problems and in sampling

theory.

The paper is divided as follows. Section two includes some facts of the

hypergeometric function and basic relations that hold for the Jacobi transform of

the first kind. Section three is devoted to the definition of the continuous

Jacobi transform and the study of its basic properties. Moreover, in the same

section, we derive an inversion formula for the transform.

2. PRELIMINARIES

In this section we discuss the basic background material necessary for the

development of the continuous Jacobi transform.

Let a, b, c be real numbers such that c0, -i, -2 Then the hyper-

geometric function

(a)k(b)k k
F(a, b; c; Z)=k=0[ JtCkk"

z Izl<l,

is absolutely and uniformly convergent on each compact subinterval of (-i,i).

Moreover, the series converges at z=-i and z=l provided that c-a-b+l>O and c-a-b>O

respectively. In particular,

r(c r(c-a-b)
lim_F(a,b; c; z)=F(a,b; c; l)=r(c_a)r.(-c_b)
z-l

(2.2)

We remark that the gamma function, whenever used, is a well-defined function of its

argument.

The hypergeometric function (2.1) satisfies the following contiguous relations

(see [6], [7]) which will be used throughout the sequel and are stated for the sake

of completeness.

F(a,b; c; z)=(l-z)C-a-bF(c-a,c-b; c; z); (HI)

-z
F(a,b; c; z)=(l-z)-aF(a,c-b; c; i_-); (H2)
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aF(a+l,b; c; z)=bF(a,b+l; c; z)-(b-a)F(a,b; c; z); (H3)

(c-b)zF(a,b; c+l; z)=cF(a-l,b; c; z)-c(l-z)F(a,b; c; z); (H4)

(c-a-b)F(a,b; c; z)=(c-b)F(a,b-l; c; z)-a(l-z)F(a+l,b; c; z); (H5)

(c-a-b)F(a,b; c; z)=(c-a)F(a-l,b; c; z)-b(l-z)F(a,b+l; c; z); (H6)

d
n (a)n(b)

F(a,b- c; z)= n

dz
n (c) F(a+n,b+n; c+n; z).

n

(a,8)
(x), of the first kind is defined byThe Jacobi function, P%

(H7)

F(k++I) F(-%,%++8+I; e+l; lx__) xe(-i 11p ,S)(x)=
r(+)r(x+)

where e, 8>-1, %el and ++i0, -i, -2 We note that if-i<8<i, then

p(%,8) (x) is well-defined at x=-l.

F(-+I)F(--8) (,8) (x), we may restrict ourselvesSince P ,8)(x)= F(’-)F(-) r--8-1
throughout the paper to the case >-+8+i

2
The function P ,8)(x) satisfies the

differential equation

l-x
2 y"+( B-e-(e+8+2 x) y’+(++8+i) y=O. (2.3)

We derive in the following lemmas basic relations that hold for the function

P’8)(x) and are essential in the study of the transform. We note that most of

these relations are generalizations of the case when %eP, where P is the set of

non-negative integers.

LEMMA 2.1. For any xe(-l,l] and any >-- the following relations hold

(i) l-x2)x %++8 2%++8 P(l_i8) (x)

d( +i B+l d (l,8)(ii)
dx

(l-x) (l+x) xP (x)) =-l(l+e+8+l) (l-x) e(l+x) 8"(’8)r (x);

( r(++l)(iii) P e,8)
(i)= F(e+I)F(X+I)’

d ,8) l(lq<+8+l) F ++i)(iv) x P (i)= 2F(+2)F(I$1)

PROOF. (i) Applying (H2), we may write PI
(’8) (x) as
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F l++i) l+x. lF x-1p e,8)
(x)= [’(+I) F(%+I) T; (-I-I-8 +i; -f).

Differentiating this expression, we obtain by (H7)

d p,B) I x+l-l_(,B) F(1+e+l) I(I+8) x
--dt (x):(T) rI (x)+ r’{e+l)F(l+l) 2(+i)

x+l. I-2 x-i
(---) F(l-l, 1-h-B; a+2; x-).

By means of (H4) and (H6), the last term can be written as a combination of

x-1 (,B)F(I-I, 1-I-8; +i’, x-1)x+l and F(-I, -I-8", e+l; x-) which reduce to PI-I (x) and

p,8) (x) respectively.

Formula (ii) follows from differentiating the left-hand side and then using

(2.3). The evaluations of (iii) and (iv) are immediate.

LEMMA 2.2. For any xe(-l,l] and I_>- e+B+l we have

%
2< F<I++I) + M(1,e,8)log
l+x(i) for -1<8<-0

) ( r(k++) + 2
(ii) for 8>0, 81P ’8)(x)l< ’’(e+l)F(l+l) M’(l,e 8)log

l+x

where M(l,e,8) and M’(I,,8) are constants depending upon

PROOF. (i) We first observe that for
2

we have

(-I) (I+e+8+i) k8_l
F(e+l) F (l+l) (e+l)kk

for some constant M(I,@,B)>0. Since -l<B-<0, it follows that

r(l+e+l) +M(I,,8) [ k-l()k
(x) I_< P(a+) r(+)

k=l

or

( 2r(1++l) +M(X,,B) log
l+xIP ,S)(x)l_< r(a+)r(+)

(ii) From (HI) it follows that

r(1-++l) F(1-++I -l-B" (x+l.---):l (x)= r(a+l) r(1+l)

Again observe that for I>-e+8+l
2
, we have
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F(I++I)
F (c+l) F

(1+e+l)k(-%-B) k I<M, (%,o,B)k-(+I)
(c+l)kk!

for some constant M’(%,,8)>0. Since 8_>0, it follows that

( 2.i+x. 8 o 8) F(1+o+l) +M’ (1,e 8) log{T IP (x) <r(e+i)r(1+i)

An immediate consequence of Lemma 2.2 is that for any 8>-1 we have

lira +(lex) 8+1 pa,8) (x):0.
x+-i

A relation of type (2.4) is needed for the next lemma.

LEMMA 2 3 For any
2

we have

lim + (l+x) 8+1 d p(a,8) (x)=
x--i

dx I r(I+++i)

PROOF. Introduce first the function

r(a+l)r(x+i) p,8) (x)R
,8)

(x): r(kbl

From lemma 2.1 (i), we have

(1-x)x R (x)+X(x+I)R (x)= 2%+qI R (x)+

(2.4)

2 I+e+8

An application of (H2) and (H6) together with multiplication by (l+x) yields

(l-x) (l+x) 8+I Rd e,8)
(x)+(x+l) 8+i_(,8)1 (x)=28+I%F(%+’ -h-B; +i; --)

From (2.2) and (2.4) we obtain

lira + (l+x) 8+1 d (e,8)

x+-i
xl (x)=

2r(c+l) r (8,+l) r (l+l) sinw.
r(-+8+i)

There fore,

lira + (l+x) 8+1 pd(%, 8)

x+-l
(x)=

28r(+a+l), r.(8+l)sin
r(I+++i)

Throughout the paper, we denote by L(-I,I), p>l, the space of all functions

f for which f ll given by
P
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flip (+B+i) ]_i(l-x) (i+x) f(x) pdx) p

is finite When the weight function w(x)-(l-x)(l+x) is identically equal to i,

we denote the space by LP(-I,I).

LEMMA 24. P’)(x)gewP(-l,l) for all p>l and for all and B such that

p+l>0 and _i<<i.
P P

2
PROOF. We first note that log gLq(-l,l)-- for any q>l and hence

2 Lqf(x)= F(+I)F(%+I)F(%+a+I) +M(,,)log belongs to (-i,i) for any q>l. Thus from

Lemma 2.2 (i) we have by Hider’s inequality (_i +i
P --i q =-)

p-i
i

(l_x)a(l+x)81 p a,8) (x)]Pdx<( (l-x)aP(l+x) x

i p2
p-i

( P)
(c’8)

(x) /P-ldx) P

-1
2

Since _-l>l for all p>l, it foilows that the right-hand side is finite if

and gp+l0. Thus pa,8) (x)Lp(_l 1) with ap+l>O and-l-<g-<O.
p

From Lemma 2.2 (ii) with 8->0, we have

r(++i 2) )(x)]< r(a+i)r(x+i)
-8+M’(X,a B)( -Blog 2

l+x

Using a similar argument as above we obtain

p,8) (x)sewP(_I l) with ap+l>O and 0<-<
I
p"

(a,) p i< ITherefore, P% (x)ew(-l,l) with pal, p+l>0, --p 8<-.p
Another useful lemma is:

+B+lLEMMA 2 5 Let , 9-> -2 (X>+C++l) and-1/2<a<1/2,-1/2<8<1/2 Then

i fi 8..(a,8) (x)p(8,c,) (-x)dx2a++l -i
(i-x) a(l+x) rl

r(i+.)r(+s+i) { sin#) sinn
(-) (++++i) r(+i) r(+++i) r(+i)r(++i)

.}.

PROOF. We first note that the integral is absolutely convergent since

(x) and p(8,c)(_x)gL_2(_l,l) for -1/2<<1/2, -1/2<8<1/2. Lemma 2.1 (ii), Lemma 2.4
w
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and an integration by parts yield

1
(-l(l+++l) (l-x) l+x) :

-i
(x) P(8,) (_x) dx

=(l-x) +l(l+x) 8+1 x p,8) (x)p (8,e)
1

(-x)
-i
+

i
c+l((Z-x) l+x)

-i

8+1 d (,8) (x)
d (8,)x P% x P (-x)dx

F(+1) r(-+++1) (l-x)+I(l+x)
d (,) 1

(x) e (-x) _+

+II P(e’8) x
d

J-i )x (l-x) o+l(l+x)+z dx P9 (-x)) dx

2e+B+iF

11-(+++i) (l-x)e(l+x)SP (’) (x)P (8,e) (-x)dx.
-i

)

Therefore

i II ( Bp(le,8) p(’,s)
2+1

-1
(l-x) l+x) (x)

9
(-x)dx

r(X+_+I)F(+i) { slnX sinv }.
T(X-9) (X+9--H+I) r (v+l) r (X’+B+I) F(+I) (+c++1)

Before we proceed to obtain some estimates on P@’)((x) for large X, we

collect some elementary properties of the Jacobi polynomials which are necessary in

the development of the paper. For l--neP, the series in (2.1) reduces to the

classical Jacobl polynomials p(,8)(x) of degree n.
n

relation

where,

There holds the orthogonality

(l-x) (l+x) BP(e’8) (x)P ’B) (x)dx
2O++l -i

n
n

nm

n=m

l’(n++l)F(n++l)
n n (2n+O-+l) F (n+et++’l)
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The discrete Jacobi transform of a function f(x), x(-l,l) denoted by (,8)(n)
(see Debnath [3]) is

{( 8)
(n)=J(f(x)) i i e( 8p( 8)

=2e+8+i (l-x) l+x) (x) f(x) dx
-i

n

and f(x) will then be given by

f(x)= [ 6-I(,8)n (n)Pn(e’)(x).
n=O

Moreover, if f(x)LwP(-l,l) p>l, then (,8)(n) defines a bounded linear mapping

fr: LP(-1,1) into the space of all null sequences. Thus one obtains the uniqueness

theorem

(e,8)(n)=O = f(x)=O a.e.. (2.5)

We also note that for any f, geL(-l,l), we have for the appropriate choice of e

and 8,

1 I1 ( S(-x) +x) f(x) g(x) dx-- [ -(’s)

2+8+i -i n=0 n (n)(a’8) (n). (2.6)

From (2.6) and Lemma 2.5 together with the identity p_-,8)t (_x)=(_l)np(8,)(x)
n

we obtain

(,8) (x)eL2w(_l,l), (a>_1/2, _1/2<8<,), it follows thatSince PX
T -(r(X+e+l) F (n+8+l) s,i.,%
0 n (%-n) (l+n++8+l)n!F(X+e+8+l)

2

After this detour, we prove

LEMMA 2 6 For X, 9>-e+8+l
2

>-1/2 and -1/2<8<1/2, we have

(i) for each compact subinterval [a,b]c(-l,l), there holds for xe[a,b] and

for
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p(Z, 8) (x)[--0()-)

and

%, [c,d]

o++lfor each [c,d]c[- 2
,) there exists a constant M>0 such that for all

PROOF. (1) The estimate in (i) follows after some calculations from

(formula 8, page 237, [7]). Actually for large I, we obtain

2+8 (l+e-i8)-B-(eiBl+e_+i(+)_iB (I++8+i)p,8) (x)=____._
1-e

-i@ +()
(1+o(l I-i[))

where cosS=x. From this we obtain the estimate.

(ii) We first consider the case when I, vO, i, 2,

2

2++i -1
(l-x) (X(l+x)

(2.6), (2.7) and (2.8) imply that

r(v++l) sinru 2
-n) (++/i)r(v++s+i))

Set

r x+a+1
@(x) ’’(x+a+B+l)

and

sinwx
VnX/=v’ (x) (x-n) (x+n++8+l) + (x)[x-n) ,(x+n++8+l) wcosnx- 2x++8+l) sinwx

(x-n)
2
(x+n+a+8+l)

2

Clearly, (x) is continuously dlfferentiable for x>- Thus for any interval
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++i[c,d]c(-
2

,), n(X) is continuous and remains bounded for any xn. Moreover,

by employing L’ Hopital’s rule we obtain that lira @niX) exists and is eual to 0.

Now,

2-
+ )n n’ n(x) dx)2=sl+S2’

n=0 n=N+l

say, where N is chosen such that N_>max

isiI_<1%_12 -I r(n+B+l) 2

n=0n n" sup In(x) l]-]2
xg[c,d]

for some >0. Also,

n=N+I n max (n-N) (n-N+8+l)

max (N+n) (N+e++l) +(2N++8+I) ) 2

(n-N)
2
(n-N++8+l)

2

where, Cmax max l(x) and Cmax- max qb (x) I. Thus
xg [c,d] xe[c,d]

IS21-< I%-Vl 2 or some MN>O.
,

Therefore, for , ve[c,d], , v0, i, 2 and M=max(, ) we have,

If either or or both assume the values 0, I, 2, then a similar but

simpler argument as above may be applied. This completes the proof of the lemma.

3. THE CONTINUOUS JACOBI TRANSFORM AND ITS BASIC PROPERTIES

In this section we define the continuous Jacobi transform and study some of

its basic properties. The idea is to replace the Jacobi polynomial in the discrete

Jacobi transform by the Jacobi function. Thus, we define the continuous Jacobi

transform of feL2(-l,l), with >-1/2, -1/2<8<1/2, by
W

(,8) (%)=
28+I _l(l_x)@(l+x)8P ,8) (x) f(x)dx.

We note that if =8=0, then (c,l)()t) reduces to the continuous Legendre transform

of Butzer, Stens and Wehrens [5]. Further, if X--neP, then (,8)() reduces to the
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discrete Jacobi transform of Debnath [3].

3.1. For any f(x)gL2w(-l,l), he haveLEMMA

() -(,) (1 =o(-1;
(ii) for p>2, (c,8) (._ c,+l+l)eCo(l+)nLP(p.+).
PROOF. (i) Lemma 2.6 (i) together with the Cauchy-Schwartz inequality yields

I(=,) ()I_<II P(’S) (x)l1211 fll 2=0(-).
(ii) Again, Lemma 2.6 (ii) together with the Cauchy-Schwartz inequality yields

(’) (x)-(=’) ()I-<MI x-l]lf 2

Hence lid ((’)(X)-(,) ())=0. Therefore, (’)(X) is continuous on

(,8) 2+I)_ C0(I+). Now in order to prove that
2

,) or (-- e

(’)(--+I)eLP+), p>2, we need to show that

+8+iI1(=’)(’- ’2%11pp= !(=’)(’-
2 )lPdx<"

For any fixed T>0, we have, by (i) above and Lemma 2.6 (i),

II (= )(x- =+X)llP< lldX+p-fll 2 X’ 0l-1"{3+1 X el’l’{3+l"
2 2

-<11 fli 2 (cl+c2T ;E- +Xl-P/2dX) 1/p

2 P<where CI and C
2

are some positive constants. It follows that II( 8)(X_ +l)llp
if p<2. Thus (,8)(._ 2+l)eCp(l+)nLP(1+).

LEMMA 3.2. Let F(x) be a function defined on [0,) such that X+8+F()eLI(+).
Then

X
+I(-X)H(X) ksinkdk

2

belongs to C(-l,l)nL2w(-l,l), where H() is given by

H(X)=

+8+ir2(x+ 2
S-fl+l $-+i
"2 )F(X+ 2
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PROOF. Observe that H(A), for large A, behaves like A+B(I+O(A-I)) (see [7]).

For any fixed T>0, we have by Lemma 2.6 (if) that

ITF( T AP(8’)IG(x) I_<I A)P(8 +l(-X)H(A)AsinAdAl+l F(
J0

2 2

A++ F(A) IdA<-AI+A2] T
where AI and A

2
are some positive constants.

defined.

Thus by the hypothesis, G(x) is well-

We first show that G(x)eC(-I,I). For any xe(-l,l), there exists a sufficiently

small 61 such that x+61e(-l,l). By Lemma 2.6 (i) and for all lyl<61, we have

(8,) e(8,) (-x)G(x+y)-G(x)1 < AIF(A) IH(A)
2 2

<2M0A++ F(A) [dX<

by hypothesis and M is some positive constant. Thus for A
0 sufflcientlv large

0 p(8,)F(I)H(I)
l-+s+It-x-y)-i-+s+IC-x))AsinWldllA (3.1)

2 2

can be made" sufficiently small. That is, given >0, there exists a A
0
sufficiently

large such that the integral in (3.1) is less than /2. Fix 10. By the continuity

of p(8,a)
A

e+8+l(-x) over (-i,i), we have for >0 that there exists a 62>0 such that

2

P(s’e) x y) p(S,a) x
_

ed+l’- [< e whenever [yl<62.
2 2

0
=j

f a+8+IF()IdA and 6--mln(61,62). Then IG(x)-G(x)l<e wheneverChoose
0

Thus G(x)eC(-I, i).

We next show that G(x)eLw2(-l,l).

dx

and by Hardy-Littlewood-Polya inequality (see[8], page 148) and Lemma 2.6 (1), we

ob tain
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[IG[12< %1F(1)IH(l)d%(2+8+l --i
e(l+x) IP%_

2

(-x) 12dx) 1/2

<C0+8+1/21F(%) IdA <

by hypothesis for some constant C>O. Thus G(x)eC(-l,l)nL2w(-l,l) and this completes

the proof.

It can be easily deduced from Lemma 3.2 that

COROLLARY 3.1. If +8=0 (-1/2<<:, -1/2<<) and F(x) is such that 1/2F()eLI(I+)
then

C(x) =0F(%) P(8’e) (-x)H
0
()

-1/2

belongs to C(-l,l) nLw2(-l,l) where

r2
HO() r(%+e4a:) F (+8+1/2)

PROPOSITION 3.1. For xe(-l,l], e+8=0, -1/2<, 8<1/2 and keP, we have

k
(,S)p e,8)

(x)=4j
0

k (X-1/2)P (-X)Ho(X) XsingdX. (3.2)

PROOF. For >-1/2, %k +1/2, we have from (2.7) with e+8=O,

(-I) kF (%++1/2) F (k+.+l) sinn(’8) (%-)=(’8) (k)=
(%_k_1/2)Cl+k+1/2)kVF(%+1/2 (3.3)

1/2(,S)
so that k (%-)eLl(+). Denote the integral in (3.2) by Gk(X). Then by

Corollary 3.1, we have Gk(X)eC(-l,l)nLw2(-l,l).. The idea now is to evaluate the

discrete Jacobi transform of Gk(X) and show that it is equal to k(e’8)(j) whence by

(2.5) we obtain Gk(X)=Pk
(’8)- (x).

I
8p(e 8).,(_mo.,8) (j)= 1/2 (l-x) O(l+x) (x) Gk(X) dx

-i

2 (l-x)(l+x)SP(’8). (x)
e,8) (%_1/2)p(8,) (_X)Ho(%) %sin%d%dx

-i J 0

which by an application of Fubini’s theorem, (3.3) and Lemma 2.5 yields
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At this stage we can employ the method used in [5] to evaluate the above integral.

In particular, we obtain that

(ka,B) (j)=
(-l)kF(k++l)F(J++I)_
4

2
k! j! (k+j+l) i

lim (gl(I) -go (I)) d%
R-o -R

whe re

einZ+ei3Wz
gi (z)

(z_k_h) (z-j-1/2)

-iz -i3z

g2 (z)=
e +e

(z-k-1/2) z -j -1/2)

(z@, zk +1/2, zj +1/2)

The method of [5] yields

0 jk

8(k(, ) (j)=

r (k++l) r(k++l)
2 j=k

(k!) (2k+l)

Hence k(,)(j)=k(’)(j). Therefore Gk(x)=P,)(x) by (2.5).

We are now ready to prove an inversion formula for the continuous Jacobi

(,) (x) of a function f(x)gL2w(-l,l). We are still assuming that +=0.transform

THEOREM 3. I. Let fgL2(-I,I) be such that %1/2(’)- (%-1/2)gLI(R+). Then forw

almost every xe(-l,l),

f(x) =40(a’8) (%-)P(’e) (-x)H0(1)%sinn%d%. (3.4)

In addition, if f is continuous on (-i,i), then (3.4) holds everywhere on (-I,i).

PROOF. Denote the right-hand side of (3.4) by J(x). Then by Corollary 3.1,

J(x)eC(-l,l)nL2w(-l,l). The discrete Jacobi transform of J(x) is

](’B)(x) 1/2 (l-x)(l+x)BP(’B) (x)J(x)dx
-i

k
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l
( 8p(a,8)=2 (l-x) l+x)

k
-i

p(8:) (_x)H0 (%) %sin%d%dx(x)J0(a’8) (x-Z)
_

The definition of (, 8) (%_1/2) and an application of Fubini’s theorem yield

o [l ( 8(,8) (y)f(y)dy)xj(,8) (k)=4] (1/2 (l-y) l+y)
0 -i

x(1/2 (l-x) l+x)
k

-i
(x) P(IS)_ (-x) dx) H

0
(%)

=410IH0 (I) s inwl (1/2
J-I

(I-Y) (I+Y) 8P {8)- (y) f (y) dy) x

x [pk(,8 (.) ]A(8 ,) (l-1/2) dl

where, in general,

[Q(_.)]A
(8,00 11 8,)()--1/2 (l-x) 8 (I+x)P (x)Q(-x) dx

-i

i
s( 8p(l8 ,)=1/2 (l-x) l+x) (-x) Q(x) dx.

-i

Now another application of Fubini’s theorem together with Proposition 3.1 yields

3(e’8) (k)=1/2 (1-y)(l+y) 8f(y) (-I) k

-i

_(e,B)
(Y)H0(l) lsinldl] dy[4

’)
(-)_%

11=1/2 (l_y)(l+y)Sf(y) (_l)kp 8,) (-y)dy
-i

11=1/2 (l-y)
c
(l+-y) 8p

-1
(y) f (y) dy=(’8) (k).

Now (2.5) implies that f(x)=J(x) a.e., xe(-l,l). If, in addition, f(x) is assumed

to be continuous, then both sides of (3.4) are continuous and the above result will

be valid everywhere in (-I,I).

We end this section with a few remarks. We first note that if the inverse

Jacobi transfor given in (3.4) is denoted by (c,), then the inversion theorem

3.1 states that f=[(a’8)] v(’8). Under suitable conditions, it can be shown that

f=[(’8)] ^(’8)" Furthermore, the restriction on and 8, namely, -1/2<, 8<1/2 and

-H=O is necessary to effect the inversion formula. The special case :8:0
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corresponds to the continuous Legendre transform developed by Butzer et. al [5].

m
The case of ==- where m is a non-negative integer requires a separate

analysis and should lead to the continuous version of the associated Legendre

transform [9].

We also note that the continuous Jacobi transform may be extended to

distributions along the lines of Zemanian [i0]. This will require the construction

of a Frchet space that contains the kernel (1-x)(l+x) 8p(,8) (x) as an element.

The transform will then be defined on the dual space as the application, of the

distribution to this kernel. This will be the subject of a later paper.
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